首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Some mechanisms which are expected to produce the growth of dust grains in the protosolar nebula are studied during the isothermal and the adiabatic phase of the gravitational collapse. Owing to the low sticking efficiency in the grain-grain collisions and also to the impossibility of gas capture by solid particles in the physical environment considered, the main result is the production in about 106 yr of a set of particles similar in mass. The obtained mass limit (10−8–10−9 g) depends on the physical properties of the grains, and seems to be independent of the turbulence model used for the gas motion.  相似文献   

2.
Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational axisymmetric dusty gas,which has a variable azimuthal and axial fluid velocity.The dusty gas is assumed to be a mixture of small solid particles and perfect gas.The equilibrium flow conditions are assumed to be maintained,and the density of the mixture is assumed to be varying and obeying an exponential law.The fluid velocities in the ambient medium are assumed to obey exponential laws.The shock wave moves with variable velocity.The effects of variation of the mass concentration of solid particles in the mixture,and the ratio of the density of solid particles to the initial density of the gas on the flow variables in the region behind the shock are investigated at given times.Also,a comparison between the solutions in the cases of isothermal and adiabatic flows is made.  相似文献   

3.
Summary The presence of solid carbon monoxide (CO) on interstellar grains was confirmed observationally in 1984 with the detection of infrared absorption at 4.67m wavelength in several molecular clouds. Subsequent observations suggest that solid CO is ubiquitous in the quiescent molecular cloud environment. In some lines of sight, the degree of frosting on to grains is sufficient to reduce appreciably the abundance of CO remaining in the gas, a result of considerable astrophysical significance: in addition to its importance as a tracer of molecular material, CO is vital to the production of many polyatomic molecules by gas phase reaction schemes, and its depletion could have a dramatic effect on the abundances of more complex carbon-bearing molecules. The infrared spectrum of solid CO provides an important diagnostic of the chemical composition and thermal evolution of grain mantles, leading to the prediction that CO2 is also present in solid form.As it is now some six years since observations of interstellar solid CO were first reported, this is an appropriate time to review the topic and to suggest some directions for future research. The introduction (Sect. 1) attempts to place the subject in its broader astrophysical context. The infrared observations and their implications are discussed in detail in Sect. 2. The question of the degree of CO depletion implied by the observations of both solid state and gas phase CO is re-examined in Sect. 3. We assess the possibility of CO detection by means of solid state absorption or luminescence in the ultraviolet in Sect. 4. Future prospects are summarised in the final section.This article was processed by the author using the Springer-Verlag TEX Theaar macro package 1988.  相似文献   

4.
When the upper part of a neutron star crystallizes to form the crust, the constituting ions are trapped in the lattice as a result of the low diffusion rates in the solid phase. As a consequence, the local composition of the crust corresponds to the equilibrium condition at the melting point and not at the present internal temperature. The inclusion of the small entropic contribution to the free energy does not lead to marked changes in our view of the microscopic structure of a neutron star crust, because the melting temperature is much smaller than the typical energies at play in the crystal cell. However, mixing between layers characterized by different nuclear species is found to be an important effect for the production of impurities. We show that one should expect an increase of the thermal diffusion time through the crust at small temperatures, because of the decrease of thermal conductivity in relatively thin impurity-rich layers acting as isolating shields.  相似文献   

5.
Organic aerosols play a significant role in the properties and evolution of Titan's atmosphere. But our knowledge of them and their physico-chemical mechanisms of formation and evolution are currently limited to a few data obtained by Titan observations from the Earth or from space probes. For this reason, laboratory experiments are developed to simulate the atmospheric chemistry and produce analogues of these aerosols in order to understand better their properties and how they are formed. The plasma discharges are the most efficient devices for the production of such analogues. However, the existing plasmas simulations introduce experimental biases compared with the conditions of aerosols production in Titan's atmosphere: chemistry is induced by electrons instead of photons; the solid analogues are produced and deposited on solid surfaces; direct analysis of the particles inside the reactive chamber is not easy. In order to avoid some of these experimental problems, we have developed another method of production of Titan's aerosols analogues. It is based on a capacitively coupled radio-frequency (RF) cold plasma system at low pressure in a N2-CH4 gaseous mixture. In this plasma, solid particles produced from the gas phase are in levitation, thus preventing any wall effect on their production, and allowing the study of the formation and growth of the particles directly in the plasma. Moreover, the electron energy distribution of this plasma can be compared with the solar spectrum. This article describes the RF plasma experiment and presents the first results obtained with an initial N2-CH4 (90:10) gaseous mixture which produced our first studied analogues of Titan's aerosols.  相似文献   

6.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.  相似文献   

7.
Assuming that the lateral variations of density in the lunar crust, the crustal density anomalies, are responsible for the lateral undulations of the lunar gravitational potential, we compute these anomalies for four different lunar models, which include an entirely solid Moon and three different solid lunar models with partially molten layers located within 600 km depth. The stress differences created by the density anomalies are determined for these models. It is found that, since the formation of the mascons, the entirely solid lunar model should have supported stress differences of the order of 70 bars while in the case of the other models, the solid layer overlying the partially molten one should have supported stress differences of more than 100 bars. The high stress differences associated with the partially molten models lead us to conclude that these models are not proper ones, and thus the Moon has always been solid since the formation of the mascons. Lunar Science Institute Contribution No. 97. The research in this paper was done while the author was a Visiting Scientist at the Lunar Science Institute, which is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

8.
We consider a spherical, solid planet surrounded by a thin layer of an incompressible, inviscid fluid. The planet rotates with constant angular velocity about a fixed axis. The motion imparted by this planetary rotation upon the fluid particles of the ocean has been assumed to be governed by a linear version of the Navier-Stokes equation.We study the vortex motion within this rotating ocean and establish that the propagation of vortices depends on a third-order partial differential equation for the stream function. We prove that, in the most general case, this vorticity equation cannot generate any solitary waves; however, should the vertical component of vorticity satisfy a certain functional relationship, then we have obtained a family of solitary waves of permanent form.Retired, U.S. Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

9.
The implication of actual cometary observations for the physical nature of comets is briefly reviewed and brings out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is incosistent with the well-established phenomenon that the comacontracts with decreasing distance from the Sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. The some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.In planning a space-mission to a comet, and if search for a nucleus is included, it will be of the highest importance for its success to ensure beforehand that the equipment carried with not fail to discover a kilometric-sized body if one is present, otherwise a null result could be interpreted simply as a failure of this part of the mission and not a proving the absence of any nucleus.  相似文献   

10.
A deeper analysis connected to general relativity is presented, considering dynamics of a solid body in a gravitational field. Two basic situations are described: namely, the case of weightlessness in free fall, and that when a solid body at rest relative to the source of the gravitational field has weight. Finally, the principle of equivalence is reformulated.  相似文献   

11.
We consider a spherical, solid planet surrounded by a thin layer of an incompressible, inviscid fluid. The planet rotates with constant angular velocityWe study the vortex motion within this rotating ocean. For this purpose, we obtain a linearized version of the Navier-Stokes equation and adopt it as our ocean model; next, we prove analytically that a certain function of vorticity is an invariant of motion.Using this ocean model and this invariant property of vorticity, we are able to establish a general equation governing the motion of vortices within a fluid shell: it is a nonlinear partial differential equation of the third order for the stream function of motion.We finally examine some particular solutions of this vorticity equation that represent solitary waves of permanent form and decay within a finite distance. These solutions have been represented in terms of quadratic, exponential, and hyperbolic functions.The question whether these vortices that propagate as solitary waves could be solitons depends on their behavior when they collide with each other; this has not yet been resolved.Retired, U.S. Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

12.
Segregation times for solid grains inside a gaseous protoplanet have been calculated for three different initial grain sizes by polytropic method. The result is found to be in good agreement with results obtained by other authors with more rigorous treatment of the problem.  相似文献   

13.
Abstract— We examined partially molten dust particles that have a solid core and a surrounding liquid mantle, and estimated the maximal size of chondrules in a framework of the shock wave heating model for chondrule formation. First, we examined the dynamics of the liquid mantle by analytically solving the hydrodynamics equations for a core‐mantle structure via a linear approximation. We obtained the deformation, internal flow, pressure distribution in the liquid mantle, and the force acting on the solid core. Using these results, we estimated conditions in which liquid mantle is stripped off from the solid core. We found that when the particle radius is larger than about 1–2 mm, the stripping is expected to take place before the entire dust particle melts. So chondrules larger than about 1–2 mm are not likely to be formed by the shock wave heating mechanism. Also, we found that the stripping of the liquid mantle is more likely to occur than the fission of totally molten particles. Therefore, the maximal size of chondrules may be determined by the stripping of the liquid mantle from the partially molten dust particles in the shock waves. This maximal size is consistent with the sizes of natural chondrules.  相似文献   

14.
The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are “painted” into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would produce steeper thermal gradients than in pure ice. If there are salt-rich layers inside the crust, forming salt beds over the seafloor or a briny eutectic crust, for instance, the high thermal gradients may promote endogenic geological activity. On the seafloor, bedded salt accumulations may exhibit high thermochemical gradients. Metamorphic and magmatic processes and possible niches for thermophilic life at shallow suboceanic depths result from the calculated thermal profiles, even if the ocean is very cold.  相似文献   

15.
As is well known, the orbital and rotational motions of a solid are coupled, and the integrals of energy and angular momentum (in a gravitational field with spherical symmetry) impose restrictions on them. We study the regions allowed to the motion in configurational space. It turns out that even in the crudest model (planar motion of a triple rod) the restrictions on the libration angle and the orbital radius of the center of mass are coupled, so that excessive ellipticity of the orbit excludes stabilization in the neighbourhood of the spoke equilibrium position by gravitational forces only.Chargé de Cours.  相似文献   

16.
Declining biological production as a part of an ongoing land degradation process is considered a severe environmental problem in the dry northern and northwestern regions of China. The aim of this study is to develop and adapt a satellite data-driven gross primary production model called Lund University light use efficiency model (LULUE) to temperate conditions in order to map gross primary production (GPP) for the Grasslands of Inner Mongolia Autonomous Region (IMAR), China, from 1982 to 1999. The water stress factor included in the original model has been complemented with two temperature stress factors. In addition, algorithms that allocate the proportions of C3/C4 photosynthetic pathways used by plants and that compute temperature-based C3 maximum efficiency values have been incorporated in the model.The applied light use efficiency (LUE) model is using time series of the Normalized Difference Vegetation Index (NDVI), CLouds from AVHRR (CLAVR) from the 8-km resolution NOAA Pathfinder Land Data Set (PAL). Quasi-daily rainfall and monthly minimum and maximum temperatures, together with soil texture information, are used to compute water limitations to plant growth. The model treats bare soil evaporation and actual transpiration separately, a refinement that is more biophysically realistic, and leads to enhanced precision in our water stress term, especially across vegetation gradients.Based on ground measurements of net primary production (NPP) at one site, the LULUE reproduces the variability of primary production better than CENTURY or NDVI alone. Mean annual GPP between 1982 and 1999 range from about 100 g/m2 in desert regions in the west to about 4000 g/m2 in the northeast of IMAR, and the coefficient of variation for GPP is highest near the margins of the deserts in the west where rainfall is erratic. Linear trends fitted through the 18-year time series reveal that the western regions have encountered no change, while a large area in the center of the IMAR shows marked increases in GPP. In the northeast, negative trends in GPP are noted and coincide with rainfall trends. Though the high inter-annual variability in primary production undermines the identification of significant trends, we could not isolate any general decline in grassland primary production.  相似文献   

17.
We consider a spherical, solid planet surrounded by a thin layer of an incompressible, inviscid fluid. The planet rotates with constant angular velocity.Within the constraints of the geostrophic approximation of hydrodynamics, we determine the equation that governs the motion of a vortex tube within this rotating ocean. This vorticity equation turns out to be a nonlinear partial differential equation of the third order for the stream function of the motion.We next examine the existence of particular solutions to the vorticity equation that represent travelling waves of permanent form but decaying at infinity. A particular solution is obtained in terms of I 1 and k 1, the modified Bessel functions of order one.The question whether these localized vortices that move like solitary waves could even be solitons depends on their behavior during and after collision with each other and has not yet been resolved.Retired, U.S. Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

18.
On the Possibility of Lightning in the Protosolar Nebula   总被引:1,自引:0,他引:1  
S.G. Gibbard  E.H. Levy  G.E. Morfill 《Icarus》1997,130(2):517-533
Chondrules constitute a significant fraction of primitive meteorites. Their thermal history includes rapid melting followed by cooling on timescales of minutes to hours. The mechanism underlying such extreme, short-lived thermal excursions away from the prevailing, much milder nebular equilibrium conditions has eluded understanding for many decades. Among the prime candidate mechanisms long thought to provide a possible explanation of chondrule formation is lightning—large-scale electrostatic discharges—in the protoplanetary nebula.In this paper, we explore the possible occurrence of such electrostatic discharges in the protoplanetary nebula powered by precipitation or other processes analogous to that believed to cause lightning on Earth and other planets. Our analysis incorporates charge separation in collisions of water-ice or other solid particles, and includes a self-consistent nebular electrical conductivity determined by a balance between production of free electrons and ions and loss to grain surfaces. We find that development of a large-scale electric field strong enough to produce discharges does not occur under conditions characteristic of protostellar nebulae. This is mainly a result of the fact that the high electrical conductivity of the environment and the relatively low density of solid particles combine to yield a situation in which the large scale electric fields, as well as the electric charges segregated on the particles are short circuited by the highly mobile electrons and ions. We also consider the possibility of lightning in altered nebula environments with higher than canonical dust density, such as a dust subdisk.  相似文献   

19.
This paper presents simplified forms of jump relations for one dimensional shock waves propagating in a dusty gas. The dusty gas is assumed to be a mixture of a perfect gas and spherically small solid particles, in which solid particles are continuously distributed. The simplified jump relations for the pressure, the temperature, the density, the velocity of the mixture and the speed of sound have been derived in terms of the upstream Mach number. The expressions for the adiabatic compressibility of the mixture and the change-in-entropy across the shock front have also been derived in terms of the upstream Mach number. Further, the handy forms of shock jump relations have been obtained in terms of the initial volume fraction of small solid particles and the ratio of specific heats of the mixture, simultaneously for the two cases viz., (i) when the shock is weak and, (ii) when it is strong. The simplified shock jump relations reduce to the Rankine-Hugoniot conditions for shock waves in an ideal gas when the mass fraction (concentration) of solid particles in the mixture becomes zero. Finally, the effects due to the mass fraction of solid particles in the mixture, and the ratio of the density of solid particles to the initial density of the gas are studied on the pressure, the temperature, the density, the velocity of the mixture, the speed of sound, the adiabatic compressibility of the mixture and the change-in-entropy across the shock front. The results provided a clear picture of whether and how the presence of dust particles affects the flow field behind the shock front. The aim of this paper is to contribute to the understanding of how the shock waves behave in the gas-solid particle two-phase flows.  相似文献   

20.
Launch of martian meteorites in oblique impacts   总被引:1,自引:0,他引:1  
A high-velocity oblique impact into the martian surface accelerates solid target material to escape velocity. A fraction of that material eventually falls as meteorites on Earth. For a long time they were called the SNC meteorites (Shergotty, Nakhla, and Chassigny). We study production of potential martian meteorites numerically within the frame of 3D hydrodynamic modeling. The ratio of the volume of escaping solid ejecta to projectile volume depends on the impact angle, impact velocity and the volatile content in the projectile and in the target. The size distribution of ejected fragments appears to be of crucial importance for the atmosphere-ejecta interaction in the case of a relatively small impact (with final crater size <3 km): 10-cm-sized particles are decelerated efficiently, while 30-50% of larger fragments could escape Mars. The results of numerical modeling are compared with shock metamorphic features in martian meteorites, their burial depth, and preatmospheric mass. Although it is impossible to accelerate ejected fragments to escape velocity without substantial compression (above 10 GPa), the maximum temperature increase in dunite (Chassigny) or ortopyroxenite (ALH84001) may be lower than 200 degree. This result is consistent with the observed chaotic magnetization of ALH84001. The probability of microbes' survival may be rather high even for the extreme conditions during the ejection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号