首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a magnetograph, we examine four sunspots for evidence of a magnetic canopy at the penumbra/photosphere boundary. The penumbral edge is determined from the photometric intensity and is defined to correspond to the value of the average intensity minus twice the standard deviation from the average. From a comparison of the location of this boundary with the location of contours of the vertical and horizontal components of the magnetic field, we conclude that the data are best represented by canopy-type fields close to all four sunspots. There is some evidence that the magnetic inclination in the canopies is 5°–15° with respect to the horizontal and that the canopy base height lies in the middle/upper photosphere. The observations further suggest that the magnetic canopy of a sunspot begins at its outer penumbral boundary.  相似文献   

2.
Digitized Mount Wilson sunspot data covering the interval from 1917 to 1985 are analyzed to examine the average areas of individual sunspot umbrae over small zones of central meridian distance. Assuming that systematic, east-west differences in these quantities are due to the inclination of the magnetic fields of the spots, one can calculate average east-west inclination angles for all spots and for subsets of the full data set. It is found from such an analysis that on average spot fields are inclined such as to trail the rotation by a few deg. Leading and following spots may show a tendency to be inclined slightly away from each other, in contrast to the results of an earlier study of plage magnetic fields. Growing spots tend to be inclined much more to the east than decaying spots. This is in the opposite sense to the analogous result derived from plage magnetic fields.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

3.
Digitized Mount Wilson sunspot data from 1917 to 1985 are analyzed to examine the growth and decay rates of sunspot group umbral areas. These rates are distributed roughly symmetrically about a median rate of decay of a few hemisphere day-1. Percentage area change rates average 502% day-1 for growing groups and -45% day-1 for decaying groups. These values are significantly higher than the comparable rates for plage magnetic fields because spot groups have shorter lifetimes than do plages. The distribution of percentage decay rates also differs from that of plage magnetic fields. Small spot groups grow at faster rates on average than they decay, and large spot groups decay on average at faster rates than they grow. Near solar minimum there is a marked decrease in daily percentage spot area growth rates. This decrease is not related to group area, nor is it due to latitude effects. Sunspot groups with rotation rates close to the average (for each latitude) have markedly slower average rates of daily group growth and decay than do those groups with rotation rates faster or slower than the average. Similarly, sunspot groups with latitude drift rates near zero have markedly slower average rates of daily group growth and decay than do groups with significant latitude drifts in either direction. Both of these findings are similar to results for plage magnetic fields. These various correlations are discussed in the light of our views of the connection of the magnetic fields of spot groups to subsurface magnetic flux tubes. It is suggested that a factor in the rates of growth or decay of spot groups and plages may be the inclination angle to the vertical of the magnetic fields of the spots or plages. Larger inclination angles may result in faster growth and decay rates.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

4.
Hagyard  M.J.  Adams  M.L.  Smith  J.E.  West  E.A. 《Solar physics》2000,191(2):309-324
In this paper we analyze the effects of Faraday rotation on the azimuth of a transverse magnetic field as determined from the linear polarization in the inverse Zeeman effect. Observations of a simple sunspot were obtained with the Marshall Space Flight Center's vector magnetograph over the wavelength interval of 170 mÅ redward of line center of the Fe i 5250.22 Å spectral line to 170 mÅ to the blue, in steps of 10 mÅ. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of view of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the azimuth at each wavelength as derived from the inverse Zeeman effect modified by Faraday rotation. From these comparisons we derived the maximum amount of rotation as functions of both the magnitude and inclination of the sunspot's field. These results show that Faraday rotation of the azimuth will be a significant problem in observations taken near the center of a spectral line for fields as low as 1200 G and inclinations of the field in the range 20–80 deg. Conversely, they show that measurements taken in the wing of a spectral line are relatively free of the effects of Faraday rotation.  相似文献   

5.
Berger  T.E.  Lites  B.W. 《Solar physics》2003,213(2):213-229
Cotemporal Nii 676.8 nm full-disk magnetograms from the Michelson Doppler Interferometer (MDI) instrument on SOHO and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. MDI produces flux density estimates based on a polarized line center-of-gravity algorithm using moderate spectral resolution filtergrams with approximately 4 arc sec angular resolution. The magnetograms are formed by an on-board image processor and sent to the ground where they are calibrated using an empirical model to produce flux density maps. The ASP uses high spectral resolution Stokes polarimetric observations to produce very high precision vector magnetic field maps at angular resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create a reference ASP `longitudinal magnetic flux density map' with which to calibrate the MDI full-disk magnetograms. The magnetograms from each instrument are scaled to a common reference frame and co-aligned with an accuracy of about 1.6 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate MDI predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine an MDI magnetogram linear calibration relative to reference ASP flux density values. We find that the current Level-1.5 MDI full-disk calibration gives flux density values lower on average by a factor of 0.64±0.013 compared to the ASP reference in active region plage. In sunspot regions (penumbra and umbra) the factor is 0.69±0.007.  相似文献   

6.
The response of longitudinal-field magnetographs to magnetic fields which are semi-infinite or confined to a horizontal layer is discussed with respect to the interpretation of solar diffuse fields, observed towards the limb, in terms of magnetic canopy models. Numerical results are presented for several reference solar models and typical calibration curves are shown for the C I 9111 Å, Fe I 8688 Å, and Ca II 8542 Å lines in magnetostatic atmospheres derived from a mean model. A procedure is developed for determining the base heights of magnetic canopies from observations with an uncertainty not exceeding the order of a pressure scale height. Until definitive information regarding atmospheric structure inside flux tubes can be developed from theory or observation, reliable field strengths cannot be derived from the data.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

7.
Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 Å. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.  相似文献   

8.
Double pass photoelectric observations are presented of five Caii lines (H, K, 8498 Å, 8542 Å, and 8662 Å) in a number of solar plages of different degrees of activity, quiet regions, and a sunspot. The data are compared with previous work. All five lines show increasing emission together in plages and the least opaque of the infrared triplet lines appears to exhibit core emission prior to the more opaque members of the multiplet. The question of source function equality is considered and the differences and similarities among plage profiles and between plage and quiet profiles are shown qualitatively and quantitatively.Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy. Inc., under contract with the National Science Foundation.  相似文献   

9.
First observations of the full Stokes vector in the upper chromosphere are presented. The He I 10830 Å line, which has been shown to give reliable measurements of the line-of-sight component of the magnetic field vector, has been used for this purpose. It is shown that the difference between the appearance of chromospheric and photospheric magnetic structures observed close to the solar limb is largely due to the difference in height to which they refer and projection effects. The observations do suggest, however, that the magnetic field above sunspot penumbrae is somewhat more vertical in the chromosphere than in the photosphere.The National Optical Astronomy Obervatories are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation  相似文献   

10.
Solar X-rays from 8–12 Å have been observed with an ion chamber photometer and fluxes derived from the observations after an assumption concerning the spectral distribution. The time variation of the X-ray flux correlates well with the radio flux, plage index, and sunspot number. Comparisons of X-ray and optical events are given; flares seem to produce soft X-rays, but some soft X-ray bursts are apparently not associated with flares. The total energy involved in the soft X-ray bursts may be a significant amount of the total flare radiation.  相似文献   

11.
Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe I line at 15648 Å The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30°. Chromospheric Hα and He II 304 Å filtergrams revealed three superpenumbral fibrils on the limb‐side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral counterpart of the light bridge. An intense, elongated brightening was observed along this fibril that was co‐spatial with the intersecting penumbral filaments in the photosphere. Our results suggest that the disruption in the sunspot magnetic field at the location of the light bridge could be the source of reconnection that led to the intense chromospheric brightening and facilitated the supply of cool material in maintaining the overlying superpenumbral fibrils. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Kozlova  L. M.  Somov  B. V. 《Solar System Research》2003,37(3):227-237
The behavior of the He I 10830 Å infrared triplet parameters in active and quiet solar regions was traced from 1976 until 2000. We analyze the correlation between the central depth of the main He I line component and other solar activity indices: the Wolf number, the radiation flux at a frequency of 2800 MHz, the mean number of flares in sunspot groups, and the mean solar magnetic field. We show that the strong correlation between the He I 10830 Å line depth and the phase of the 11-year solar cycle allows this depth to be effectively used as a new solar activity index both on long time scales (years) and on times scales of the order of a month or even days. The suggested new activity index is shown to have advantages over the universally accepted indices. The depth of the He I 10830 Å line in quiet regions was found to increase from the phase of minimum solar activity to the phase of maximum by a factor of about 2. In active regions, this increase is less than 30%. The differences between the cyclic variations of the chromospheric He I 10830 Å line radiation in active and quiet structures on the solar disk are indicative of the probable differences in the nature of cyclicity and its manifestations in magnetic fields of different spatial scales. The background magnetic fields appear to vary during the solar cycle more strongly than do the local fields associated with sunspots, faculae, and activity complexes. We suggest using regular observations in the He I 10830 Å line to predict solar activity.  相似文献   

13.
The Haleakala Stokes polarimeter   总被引:1,自引:0,他引:1  
D. L. Mickey 《Solar physics》1985,97(2):223-238
A versatile Stokes polarimeter for solar observations has been developed at the University of Hawaii. Recent improvements to the instrument include a high-resolution echelle spectrometer coupled to the telescope by optical fibers, and 128-element diode array detectors. The on-axis design of the telescope and polarimeter limit instrumental polarization to 10–4, and the spectrometer detector combination provides spectral resolving power of 160000 for any wavelength between 4000 and 11000 Å. This paper describes the Haleakala polarimeter and in particular the spectrometer with its fiber-optic coupling. Examples of Stokes line profiles observed in a sunspot are presented, together with derived vector magnetic field maps.  相似文献   

14.
对太阳大气磁场的可靠测量有助于人们更好地理解太阳活动区内外的许多活动现象,如耀斑的触发和能量释放过程、黑子的形态和黑子大气的平衡、日珥的形成等.由于原子在磁场中的一些能级会产生分裂(Zeeman效应),使对应这些能级的谱线分裂成若干个具有不同偏振特性的分量,因此目前对黑子磁场的测量主要是通过偏振光,即Stokes参量I、Q、U、V的观测来实现的.该文主要介绍近30年来太阳黑子光谱反演的方法以及所取得的成就;同时也对光谱反演和滤光器型的望远镜矢量磁场的测量进行了简单的比较.  相似文献   

15.
The magnetic splitting peculiarities of the absorption lines in the sunspot spectrum are considered. The most common and typical of them is breaking of all Stokes parameter symmetry in regard to the line center. The possible reason of this effect is the macroscopic gas motion with inhomogeneous velocity. Computed contours are given for the line Fe i λ5250 Å with various combinations of magnetic and velocity fields. Magneto-optical effects within the line which are connected with the magnetic and velocity field inhomogeneity are discussed. The observation results are discussed for longitudinal magnetic field zero lines. These observations were carried out for the sunspot and photosphere in two spectral lines Fe i λλ 5250 and 5233 Å. In the sunspot the regular displacement of one zero line with respect to the other zero line takes place whereas in the photosphere the displacements are random. The possible reason of the regular displacement is the change of the magnetic field direction in the different optical layers wherein corresponding spectral lines are formed effectively. The connection between the zero line displacement of a longitudinal magnetic field and the crossover effect is discussed. The computation results are given which agree with observations and illustrate the above-mentioned relationship. The influence of the Stokes parameter asymmetry on the measured magnetic field signals is considered.  相似文献   

16.
We examine published sunspot and calcium plage areas for 1620 solar active regions between 1974 and 1985. With these data we study the properties of ensemble-averaged active regions. The average sunspot area per region, the average plage to sunspot area ratio, and the average plage intensity of regions all vary significantly with the sunspot cycle and in correlation with one another. The average plage area per region varies significantly but is uncorrelated with the sunspot cycle and with the other quantities. While the plage and sunspot areas and the plage intensities of individual active regions observed over a two-year period are strongly correlated, the relationship among these quantities appears to change over an 11-yr period. These results suggest the existence of some energetic connection between active region sunspot areas and plage intensities. Further, if energy balance between sunspot luminosity deficits and facular luminosity excesses holds, then standard models relating these quantities to sunspot and plage areas will have to be modified. Overall energy balance can neither be established nor ruled out.Solar Cycle Workshop Paper.  相似文献   

17.
Using a differential method we have carried out observations of oscillations in six sunspots. Spectral lines Fe i 5434 Å and Fe i 5576 Å were used. Horizontal waves are not observed in the sunspot umbra photosphere. Results obtained indicate that, at least, the sunspot umbra oscillates as a single whole.  相似文献   

18.
Spectra from 2678-2931 Å were obtained of an active region during the 19 June 1974, flight of the University of Hawaii rocket-borne echelle spectrograph. We report behavior of the Mg i and ii resonance line cores in quiet Sun, plage, sunspot, and filament structures. Among the interesting variations in these lines we discern a strong suppression of the red Mg ii emission peaks and possible rapid changes in the Mg i core in the spatially partially resolved sunspot.  相似文献   

19.
The Mount Wilson coarse array data set is used to define active regions in the interval 1967 to August, 1988. From the positions of these active regions on consecutive days, rotation rates are derived. The differential rotation of the active regions is calculated and compared with previous magnetic field and plage rates. The agreement is good except for the variation with time. The active region rates are slower by a few percent than the magnetic field or facular rates. The differential rotation rate of active regions with reversed magnetic polarity orientations is calculated. These regions show little or no evidence for differential rotation, although uncertainties in this determination are large. A correlation is found between rotation rate and region size in the sense that larger regions rotate more slowly. A correlation between rotation rate and cycle phase is suggested which is in agreement with earlier sunspot results. Leading and following portions of active regions, unlike leading and following spots, show little or no difference in their rotation rates. The regions with polarity orientations nearest the normal configuration tend to show rotation rates that are nearest the average values. Most of these results generally support the conclusion that old, weaker magnetic fields have evolved different subsurface connections from the time they were a part of sunspots or plages. It seems possible that they are connected at a shallower layer than are sunspot or plage fields.Operated by the Association of Universities for Research in Astronomy, Inc., under Contract with the National Science Foundation.  相似文献   

20.
The inversion routine proposed by Aueret al. (1977), for the determination of vector magnetic fields from Stokes profiles, has been generalized to include magneto-optical and damping effects. Synthetic profiles have then been generated from a sunspot model atmosphere accounting for the depth variation of the relevant physical parameters such as the magnetic field amplitude, inclination angle, etc...., each variation being considered one at a time. Alfvén waves and magnetic inhomogeneities over the field of view have also been considered. These synthetic profiles have been presented to the inversion routine. The results of the fits show that the magnetic field amplitude and direction are always recovered with good accuracy when these quantities are constant in the model atmosphere, and, in those cases where te magnetic field vector is supposed to vary monotonically with optical depth, the values recovered are always intermediate between the values corresponding to the top and bottom of the atmosphere. Moreover, we found that the differences between synthetic and best-fit profiles are able to characterize, in many cases, the particular physical situation considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号