首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
21世纪长江中下游梅雨的新特征及成因分析   总被引:4,自引:1,他引:4  
蒋薇  高辉 《气象》2013,39(9):1139-1144
利用1961—2011年观测资料分析了长江中下游梅雨各特征量的时空变化特征,尤其是21世纪的新特征,指出2000年以来梅雨入梅偏晚,出梅偏早,梅雨长度缩短,强度减弱。统计发现,在这一时段梅雨期内降水日数明显减少,在梅雨长度缩短的同时,降水日数占梅雨期长度的比例也下降,表明梅雨期内强降水越来越集中。梅雨的这种年代际变化可能和2000年以来北太平洋海温处于PDO负位相,且这一时期拉尼娜事件频繁发生有关。在PDO负位相背景下,我国汛期多雨带位置易偏北,同时由于拉尼娜事件频发,热带西太平洋海温增高,使副热带高压偏强偏西偏北,阻止了源自印度洋和孟加拉湾的西南气流向长江中下游地区的输送,迫使水汽输送路径更加偏北偏西至淮河及以北地区,长江中下游地区低层为正散度距平,梅雨降水减少。  相似文献   

2.
我国长江中下游梅雨锋暴雨研究的进展   总被引:12,自引:8,他引:12  
倪允琪  周秀骥 《气象》2005,31(1):9-12
我国长江中下游梅雨锋暴雨研究在最近五年中取得了明显的进展,其中有:第一,提出了基于多种实时观测资料的梅雨锋暴雨的多尺度物理模型;第二,建立了梅雨锋暴雨的天气学模型;第三,提出了梅雨锋的详实结构及其维持机理;第四,提出了多种中尺度暴雨的定量卫星遥感反演理论和方法,并形成一系列新的反演产品;第五,成功地研究了双多普勒雷达同步探测和反演中尺度暴雨三维结构的理论和方法;第六,发展了配有三维变分同化系统的中尺度暴雨数值预报模式系统,在2003年淮河抗洪救灾中发挥了积极作用。  相似文献   

3.
利用NCEP/NCAR再分析资料,用拟牛顿法通过菱形15波截断的谱方法对无强迫无耗散的正压涡度方程进行数值求解,得到1987—2006年共20a夏季的逐日定常自由模。由此诊断分析得到,自由模态中副高的第一次北跳日期一般超前于实际流场中副高的第一次北跳日期,而且超前于实际的入梅日期;丰梅年,自由模态中副高的第一次北跳比实际副高的第一次北跳平均提前9.3d,比实际入梅日期提前8~14d,平均提前10.3d;枯梅年,自由模态中副高的第一次北跳比实际副高的第一次北跳平均提前2d,比实际入梅日期提前2~5d,平均提前3.6d。这对长江中下游地区的梅雨预报有较好的参考作用。  相似文献   

4.
基于WRF数值预报模式,对2011年梅雨期6月9—10日和14—15日长江中下游地区两次暴雨过程(分别简称“6·10”过程和“6·14”过程)进行数值模拟,重点对比分析了暴雨期间西南涡的活动与高低空急流耦合配置之间的关系。结果表明:1) 西南涡的活动和高低空急流耦合配置与暴雨活动关系密切,是造成两次暴雨过程范围和强度差异的重要因素。2)“6·10”过程中,一个浅薄的西南涡系统受青藏高原浅槽东移北缩减弱影响,向东北方向移动,同时西南低空急流位置偏北,导致暴雨区位置偏北;“6·14”过程中,一个深厚的西南涡系统受高空浅槽东移发展加深影响,沿长江缓慢东移,伴随西南低空急流位置偏南,降水缓慢向东移动,导致暴雨区位置偏南。3) 两次过程的强降水中心均位于高低空急流耦合区,“6·10”过程中,在长江中下游地区形成的高低空急流耦合区范围偏小且强度偏弱,因此辐合上升运动偏弱,不利于形成大范围的强降水;“6·14”过程中,在长江下游地区形成大范围高低空急流耦合的环流形势,强烈的辐合上升运动配合充足的水汽供应,最终形成大范围强降水。  相似文献   

5.
利用NCAR/NCEP提供的40年再分析资料和英国气象局提供的月平均海温资料及中国气象局整编的160站的降水、西太平洋副高参数资料,分析了长江中下游地区夏季降水在20世纪70年代中期前后的显著变化及其可能原因。结果指出东亚夏季风与中东太平洋海温在1976年之前关系不明显,1976年之后东亚经圈环流与低纬纬圈环流耦合紧密,加强了东亚夏季风与中东太平洋海温的联系。而20世纪70年代中期以后中东太平洋前冬的海温异常通过海洋过程影响次年夏季我国近海地区海温变化,近海海温异常作为热源强迫可以使副高位置偏南强度加强,从而造成我国长江中下游地区夏季降水偏多。  相似文献   

6.
长江下游梅汛期中尺度涡旋特征分析   总被引:3,自引:3,他引:3  
利用2006~2009 年日本再分析资料对长江下游地区梅汛期间(5~7 月)边界层内中尺度涡旋进行普查,并分类统计分析了边界层内中尺度涡旋与暴雨、低空急流的关系。研究结果表明:每年的5~7 月该地区经常在对流层低层或(和)边界层内出现中尺度扰动涡旋,根据中尺度涡旋最初生成的高度不同,可划分为边界层中尺度涡旋、对流层低层中尺度涡旋和对流层低层—边界层中尺度涡旋三类。边界层中尺度涡旋中与暴雨有密切关系的中尺度涡旋称为边界层中尺度扰动涡旋(PMDV),根据涡旋前或后6 小时累积雨量,可以进一步将其分成两类:第一类是暴雨的直接制造者中尺度对流系统(MCS)先于边界层中尺度扰动涡旋发生(MCS-PMDV);第二类是边界层中尺度涡旋产生后,激发了中尺度对流,造成了暴雨过程(PMDV-MCS)。PMDV-MCS 类涡旋暴雨的特点是在对流层低层850 hPa 是一条切变线,其南侧有一支西南低空急流,边界层925 hPa 则是一个闭合的涡旋,暴雨区主要落在涡旋的东北面和东南面。  相似文献   

7.
长江中下游入梅指数及早晚梅年的海气背景特征   总被引:4,自引:0,他引:4  
利用1957~2001年全国160站逐月降水资料和116站入梅日期资料,定义了一个长江中下游入梅指数,以定量描述长江中下游地区平均入梅的早晚,再结合ERA-40高分辨率再分析资料和ERSST海温资料,利用相关分析和合成分析, 分别研究了早、晚梅年同期(6~7月份)和前期(前一年12月份至当年5月份)的大尺度大气环流及海温的异常特征。结果表明:早梅年同期,200 hPa南亚高压偏北,印度北部、孟加拉湾-印度尼西亚-副热带太平洋地区上空的对流偏强,西太平洋副热带高压和赤道辐合带位置偏北,东亚副热带夏季风偏强,晚梅年则相反。前期1月份北太平洋涛动及4月份西太平洋暖池附近的对流与当年入梅早晚存在显著的相关关系:早梅年,1月份北太平洋涛动偏弱,4月份西太平洋暖池附近的对流活跃;晚梅年,1月份北太平洋涛动偏强,4月份西太平洋暖池附近的对流偏弱。此外, 从前期海温场来看,早梅年,1~4月份北大西洋中高纬地区海温偏低,低纬地区海温偏高,呈南北偶极子分布状态,2月份西太平洋暖池附近海域及北半球冬、春季环澳大利亚海域海温明显偏高,晚梅年情况正好相反。以上这些前期信号为长江中下游地区入梅的短期气候预测提供了参考依据。  相似文献   

8.
从中期天气过程看近几年长江中下游梅雨偏少的原因   总被引:3,自引:1,他引:3  
鲍名 《大气科学》2009,33(4):708-718
长江中下游地区自2000年到2007年连续八年梅雨期降水偏少。本文从中期天气过程的角度分析了这八年不利于长江中下游梅雨的主要因子, 有东亚高空急流中准定常波动、 西太平洋暖池强对流活动和西北太平洋热带气旋活动。西太平洋副热带高压受这些因子的直接影响, 在中期时间尺度上副高环流形势发生变异, 从而造成长江中下游梅雨期的降水异常减少。在这八年的梅雨期中, 这些因子的特别异常, 更主要的由于它们的组合作用是导致近年来长江中下游梅雨偏少的直接原因。并且, 同样是长江中下游梅雨偏少, 不同因子的组合方式也影响着长江中下游梅雨偏少的降水异常分布背景。本文还初浅地讨论了在季节内预测长江中下游梅雨时对中期天气过程的参考。  相似文献   

9.
海温分布型对长江中下游旱涝的影响   总被引:7,自引:3,他引:7       下载免费PDF全文
采用经验正交函数 (EOF) 分解、奇异值分解 (SVD) 及相关、合成分析等方法, 分析了太平洋海温异常分布与东亚大气环流及长江中下游降水的关系.结果表明:涝、旱年太平洋海温差值场从前一年秋季至当年夏季一直维持由西北向东南“+ - + -”分布特征, 这种太平洋海温分布型与东亚-太平洋遥相关型 (EAP) 密切相关.旱涝年前期太平洋海温异常分布使得低纬度对流活动有明显差异, 而对流活动的异常分布又导致西太平洋副高及东亚大气环流的异常, 从而影响长江中下游降水.数值试验进一步表明:长江中下游旱涝不仅与热带, 同时也与中高纬太平洋的海温异常有关.  相似文献   

10.
2011年初夏我国长江中下游降水的气候特征及成因   总被引:3,自引:3,他引:3  
文章主要分析了2011年初夏长江中下游降水的气候特征及其成因。结果表明:2011年5月长江中下游降水异常偏少,6月转为异常偏多,出现了明显的旱涝转换。长江中下游地区的旱涝转换主要受南海季风、东亚季风强度以及西太平洋副热带高压(副高)的异常快速北跳的影响。研究还发现,6月亚洲中高纬长期维持两槽一脊的环流形势,东北冷涡活动频繁,多次引导冷空气南下。同时,副高异常偏北、偏西,并出现多次西伸过程。由于冷涡的加强南压与西伸的副高相互作用,促使长江以南地区西南气流明显增强,使得冷暖空气在长江中下游地区交汇,最终导致该地降水偏多。  相似文献   

11.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

12.
利用中国气象局2014年发布的《梅雨监测业务规定》中的入梅日期资料、NCEP/NCAR再分析资料及NOAA海温资料等,重点研究了1951—2015年江南入梅早、晚的气候特征,及其与同期(5—6月)大气环流及前期海表温度变化的关系。结果表明,近65年来江南入梅日具有显著的年际变化特征,入梅平均日期为6月8日,最早和最晚相差47 d。入梅日主要出现在6月,占80.0%。江南入梅偏早和偏晚年,对流层高层至低层的同期大尺度环流存在明显的差异。入梅偏早年,高层南亚高压和东亚副热带西风急流(西风急流)的建立较早,强度较强,南亚高压北移到青藏高原上空亦偏早,西风急流北跳偏早; 中层中高纬度经向环流较强,而西北太平洋副热带高压(副高)第1次北跳偏早; 低层索马里越赤道气流建立较早,强度较强,西太平洋为反气旋式距平环流; 入梅偏晚年上述环流系统演变特征则基本相反。冬、春季海表温度的异常是影响入梅早、晚的重要的外部强迫因子,也是重要的前期预测信号:当冬季东太平洋海表温度为负距平、澳大利亚东部海表温度偶极子为正位相及春季北大西洋三极子处于正位相时,江南入梅偏早; 上一年12月澳大利亚东侧海表温度偶极子和当年3月北大西洋三极子与江南入梅早、晚关系最为密切,当12月澳大利亚东部海表温度偶极子为正位相时,副高第1次北跳偏早,当3月北大西洋三极子为正位相时,6月西风急流偏强、偏北,有利于江南入梅偏早。   相似文献   

13.
1998年夏季长江流域梅雨期环流演变的特殊性探讨   总被引:18,自引:2,他引:18  
利用1998年南海季风试验(SCSMEX)和华南暴雨试验(HUAMEX)的同化资料和2001年"973"中国暴雨试验(CHeRES)的T106背景场资料,对1998、2001年夏季6~7月环流和降水的分析表明:(1)1998年中高纬度双阻形势有利于冷空气南下,对"二度梅"的形成有重要作用;2001年副高偏东,中纬度槽脊的位置与典型梅雨相反,没有形成典型的梅雨.(2)东亚沿岸大槽的形成以及相应西风急流的南移、东伸和北风(冷空气)的南进,对"二度梅"开始时副高的突然南压有重要作用,这些因子可以作为1998年7月下旬"二度梅"形成的前期预报因子.(3)对降水与夏季风关系的分析表明,季风的短期变化与雨带的进退和维持有密切关系,特别是20~30°N较大范围的低空急流对梅雨锋降水有重要作用;1998年梅雨期风速和湿度场有明显的日变化,且与强对流系统发生的时间一致.(4)对历史上"长梅"和"二度梅"年情况进行了分析,并将1998年的环流与1950年以来造成严重洪涝灾害的"长梅"和"二度梅"的环流作了对比,再次确认这几次梅雨期的中高纬度均为双阻或单阻形势,而1954、1980、1991年的副高为带状;1954、1980年副热带高压属于西进稳定型,1991、1998年分别属于南退北跳型及北跳南退型,但最后经调整使副高停留在长江以南,均有利于梅雨期降水.  相似文献   

14.
近50年来长江中下游汛期暴雨变化特征   总被引:5,自引:2,他引:5  
基于1960~2008年逐日降水观测资料,分析了长江中下游汛期暴雨的气候分布特征、年际、年代际变化以及趋势变化特征。结果表明,该区域汛期暴雨分布呈现南部多、向北递减的总格局。最大暴雨量中心位于江西北部,其形成可能与地形因素有关。在年际尺度上,该区域暴雨量、暴雨强度存有准两年及6~8年的周期变化特征;从年代际尺度看,在时间域上,存在12~14年的周期变化。具体地,汛期区域平均暴雨量、频次在1960年代至1980年代是一个相对平稳的时期,1990年代开始则进入一个高值期,21世纪以后又开始回落。相比较而言,暴雨强度的年代际变化不显著。在空间域上,进入21世纪后随着雨带向淮河流域推进,暴雨量、频次、强度在苏北、皖北增强。从趋势分析看来,过去50年汛期暴雨量、频次呈现较大范围的增加趋势。暴雨强度也表现一定程度的增加趋势。  相似文献   

15.
长江下游梅雨期低涡统计分析   总被引:3,自引:1,他引:3       下载免费PDF全文
应用1998—2005年长江下游地区常规观测资料,结合卫星云图和中尺度数值模拟结果,对该时段发生在长江下游的局地生成中尺度低涡活动进行统计,并对低涡生成大尺度环境场及物理量参数进行合成诊断分析,为长江中下游地区梅雨期暴雨预报提供实际参考。结果表明:长江下游地区中尺度低涡主要形成于大别山山脉及山脉两侧的高能高湿的环境条件中,槽前的正涡度平流输送是低涡形成的必要条件之一。长江下游地区中尺度低涡一般存在于700 hPa以下的对流层低层,水平尺度普遍在400 km之内,形成后沿东北方向移动,在山东北部沿海入海,或沿东南方向移动在江苏南部到浙江北部沿海入海,在陆地上的生命期一般小于48 h,但70%以上的低涡都在长江下游地区触发中尺度对流系统发展而产生暴雨。暴雨区主要发生在低涡的南侧或东南侧,高低层急流配置、低层水汽输送和地形条件对低涡暴雨的触发具有重要作用。  相似文献   

16.
孙思远  管兆勇 《大气科学》2022,46(5):1041-1054
2020年梅汛期(6~7月)长江中下游地区发生了严峻的汛情。2020年梅雨期长度和强度均远超历史平均水平。本文利用逐日NCEP/NCAR再分析资料和全球降水量网格数据集,研究了本次梅汛期降水特征及其与对流层上层斜压波动活动的联系。结果表明:本次梅汛期,长江中下游地区的总降水量和降水异常大值区位于安徽南部,共有7次连续的降水过程发生。长江中下游地区在对流层中低层辐合、高层辐散,且该地区上空有强的异常上升运动,有利于异常强降水的发生发展。同时,水汽自孟加拉湾和中国南海地区输送至长江中下游地区,为强降水的发生提供了充足水汽。利用小波分析研究该地区的逐日降水标准化时间序列时,发现其存在2~4天和6~14天的显著周期。高频(2~14天)扰动所显示的Rossby波动在对流层上层表现出向下游频散的特征,波动源于贝加尔湖附近。波扰动能量和通量所显示的波动向下游的传播过程与波包的传播过程较为一致,分别源于地中海和贝加尔湖附近的波扰能向东或向东南频散至长江中下游地区,有利于该地区扰动加强并进而有利于强降水的发生和维持。以上结果加深了人们对2020年超长“暴力梅”成因的认识并可为有效预测类似事件提供线索。  相似文献   

17.
长江梅雨的长期变率与海洋的关系及其可预报性研究   总被引:4,自引:0,他引:4  
采用最新发布的梅雨国家标准资料,以长江区域梅雨为代表,在分析区域梅雨的多时间尺度变化特征的基础上,从海洋外强迫影响因子角度探讨了梅雨的可预报性来源,进一步综合海洋背景变率和预测模型回报试验讨论梅雨异常的可预报性。结果表明:(1)长江梅雨呈现周期为3-4、6-8、12-16、32、64 a的多时间尺度变化分量和长期减少趋势。其中,3-4 a准周期变化是梅雨异常变化的主要分量。梅雨的干湿位相转变受12-16 a的准周期变化调制,极端涝年易出现在12-16 a准周期变化湿位相和3-4 a变化分量峰值位相叠加的情况。(2)长江梅雨的各准周期变化分量有不同的海洋外强迫背景,是梅雨可预报性的重要来源。与时间尺度较短的年际变化分量相关联的海温关键区主要分布于热带,而与时间尺度较长的年代际或多年代际变化分量相联系的海温关键区则来自中高纬度。3-4 a准周期变化分量的海洋外强迫强信号随季节变化由前冬的ENSO(厄尔尼诺-南方涛动)转为春末夏初的印度洋偶极子(IOD)。6-8和12-16 a年准周期变化分量的海洋强迫关键区主要位于太平洋。准32和准64 a周期振荡则受北太平洋多年代际变化(PDO)和北大西洋多年代际变化(AMO)的共同影响。梅雨的长期变化趋势则与全球变暖背景及以PDO为代表的年代际海洋外强迫因子相联系。(3)尽管梅雨异常与ENSO的正相关关系呈现减弱趋势,但20世纪70年代以后的梅雨异常年际变化分量的可预报性有所增大。(4)将梅雨各变化分量作为预测对象分别建模,进一步构建梅雨异常预测统计模型。采用该模型对近5年梅雨预测进行独立样本检验,有较好的回报效果,验证了梅雨异常年际分量可预报性的稳定性以及基于多时间尺度分离建立梅雨预测模型的优越性。   相似文献   

18.
使用41站日降水资料和NCEP/NCAR再分析月平均资料,研究了长江中下游地区春季降水的时空特征。结果表明,过去50多年来,长江中下游地区春季的雨日、雨量呈整体下降趋势,降水强度呈东减西增的趋势;该区春季连续性降水通常以2 d降水居多,江北地区以连续性中小降水为主,而江南地区则是独立性的强降水居多。春季长江中下游地区在近50 a里呈现出干旱化趋势,其和对流层中高层气温下降关系密切,由于气温相对下降,我国东部上空高层产生气旋性环流异常,不利于降水的发生。  相似文献   

19.
2011年长江中下游梅雨期强降水延伸期集合预报性能初探   总被引:1,自引:3,他引:1  
李勇 《气象》2016,42(9):1114-1123
针对2011年长江中下游旱涝转换时期的环流形势、强降雨期间的四次强降雨过程对欧洲中心集合预报进行了预报性能初步分析。结果表明:集合平均预报对延伸期预报时效内的大尺度环流调整具有较好的预报性能,预报提前时效可达10~15 d。对强降水过程期间主要影响系统的预报在不同预报时效具有较好的稳定性。随着预报时效的临近,集合预报各个成员对天气系统预报的发散度逐渐减小。长江中下游强降水的发生与低层850 hPa较大的风速有密切关联,集合预报给出的延伸期预报时效内大风速出现的小概率预报信息是有意义的,可以为延伸期强降雨过程预报提供参考。  相似文献   

20.
The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the climatological mean summer precipitation. The relationship between the interdecadal change in the intensity of summer precipitation and its interannual variability over this area is investigated, by analyzing five gauged and re-constructed precipitation datasets. The relationship is found to be very weak over the MLYRV, with a correlation coefficient of only approximately 0.10. The Pacific Decadal Oscillation influences the western North Pacific subtropical high, which is responsible for the interdecadal change in summer precipitation over the MLYRV. However, the precipitation interannual variability is closely related to the ENSO events in the preceding winter due to its impact on the meridional displacement of the East Asian westerly jet. Different physical mechanisms cause different interdecadal variation in the intensity of summer precipitation and its interannual variability, and thus result in a poor relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号