首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
钟敏  闫昊明 《天文学报》2007,48(3):302-310
目前海洋对极移季节变化的激发尚未得到合理的定量结果.许多研究已经表明大气运动是极移季节变化最大的激发源,海洋运动是剩余部分最主要的激发源之一.利用新一代SODA海洋同化资料(SODA_1.4.2和SODA_1.4.3)以及ECCO海洋同化资料,深入研究了1992—2004年全球海洋对极移周年变化的激发以及激发随纬度的分布.结果表明,SODA海洋激发的季节变化与从测地激发函数中扣除大气、陆地水作用剩余部分的季节变化在所研究的大部分时段非常接近,二者的周年振幅和位相结果基本相当.此外,与早期SODA_Beta 7的结果比较,新一代的SODA海洋激发有了明显改善.SODA和ECCO海洋对极移周年激发的纬度分布,在格林威治方向上比较一致;在东经90°方向上有明显的差别.  相似文献   

2.
水文、大气和海洋对钱德勒摆动的激发   总被引:1,自引:0,他引:1  
分析计算了由陆地上土壤湿度和积雪水当量变化引起的水文变化对钱德勒摆动的激发作用,并将其和大气、海洋激发一起与天文观测激发作了比较.结果表明,虽然水文激发在钱德勒频带上的激发能量很小,只能解释观测激发的平均能量约10%,但是在大气激发的基础上增加水文变化的激发作用,显著提高了与观测激发的相干系数和置信度水平.因此,水文变化对钱德勒摆动的激发作用是值得重视的激发因素之一.  相似文献   

3.
研究Chandler摆动的一个随机激发模型   总被引:1,自引:0,他引:1  
基于同运动激发了Chandler摆动的假设,提出一个研究Chandler摆动的随机非线性模型,它是由一个随机性阶梯函数和一个具有阻尼的线性谐振子的Euler中心差分格式混合而成,研究此模型中各个参数与Chandler摆动振幅的关系,通过对基于实测资料获得的有效大气角动量时间序列的统计分析,初步发现其中含有随机噪声成份,它可以激发目前观测到的Chandler摆动振幅的28-40%,最后,对Chandler摆胡机激发的假设作了一些讨论。  相似文献   

4.
应用日本气象厅(JMA)最近发表的以美国大气与环境预测中心(NCEP)修正前、后的reanalysis数据计算出的全球和南、北半球风角动量资料,估计了风对Chandler摆动的平均激发能量,以及风的激发与观测激发之间的相干系数和相干相位.结果表明, 1980-1993(1980-2003)年期间,全球对流层风和(对流层 平流层)风对Chandler摆动的激发能量可分别解释观测激发的68%和72%(58%和51%),对流层风起着主导作用;它们与观测激发的相干系数分别达到0.49和0.32(0.50和0.39),而且具有接近于零的相干相位.这些结果充分说明风在Chandler摆动激发中的重要作用.分析结果也展示了分别应用NCEP修正前,后的reanalysis数据、从实际表面和海平面开始积分的风角动量对Chandler摆动激发的不同影响.  相似文献   

5.
针对极移复杂的时变特性, 根据混沌相空间坐标延迟重构理论, 提出一种基于Volterra自适应滤波的极移预报方法. 首先, 利用最小二乘拟合算法分离极移序列中的线性趋势项、钱德勒项和周年项, 获得线性极移、钱德勒极移和周年极移的外推值; 其次, 通过C-C关联积分法对最小二乘拟合残差序列进行相空间重构, 并利用小数据量法计算残差序列的最大Lyapunov指数验证其混沌特性, 在此基础上, 构建Volterra自适应滤波器对残差序列进行预测; 最后, 将线性极移、钱德勒极移和周年极移的外推值以及最小二乘拟合残差的预测值相加获得极移最终预报值. 利用国际地球自转服务局(International Earth Rotation and Reference Systems Service, IERS)提供的极移数据进行1--60d跨度预报, 并将预报结果分别与国际地球定向参数预报比较竞赛(Earth Orientation Parameters Prediction Comparison Campaign, EOP PCC)结果和IERS A公报发布的极移预报产品进行对比, 结果表明: 对于1--30d的短期预报, 该方法的预报精度与EOP PCC最优预报方法相当, 当预报跨度超过30d时, 该方法的预报精度低于EOP PCC最优预报方法, 优于参与EOP PCC的其他方法; 与IERS A公报相比, 该方法的短期预报效果较好, 当预报跨度增加时预报精度低于IERS A公报. 预报结果表明该方法更适合于极移短期预报.  相似文献   

6.
海洋角动量对地球自转变化的激发   总被引:5,自引:1,他引:5  
介绍了海洋角动量模型的现状和发展,以及地球自转变化和海洋之间的关系的一些预研究成果.有关的预研究结果表明,海洋可能是地球自转变化的一个激发源,海洋和地球自转变化之间相互影响、相互作用.但两者之间的关系以及作用机制都有待深入研究。  相似文献   

7.
基于澳大利亚PARKES天文台射电数据和RXTE (Rossi X-ray Timing Explorer)中ASM (All Sky Monitor)的X射线数据对毫秒脉冲星J0437-4715进行两个波段的研究.对J0437-4715在射电波段的观测运用TEMP02软件对不同终端系统的计时数据进行校准,提高了计时模型精度.用结构函数法,利用RXTE全天候扫描ASM的观测数据,对J0437-4715在X射线波段的光变进行中长期研究,发现它在X射线波段存在一个620 d的光变周期.  相似文献   

8.
大气对地球自转参数(ERP)的高频激发   总被引:4,自引:0,他引:4  
谢伯全  郑大伟 《天文学报》1996,37(2):113-123
本文采用1983—1992年期间由空间大地测量技术观测和归算的地球自转参数(ERP)序列,以及由全球气象资料归算的大气角动量(AAM)序列,分析和研究了大气对地球自转参数的日长变化(LOD)和极移(x和y)在一个月时间尺度以内的高频激发作用,得到的主要结果如下:1大气对LOD分量高频潮汐的估计值存在着影响,但是,潮汐形变参数k/c随时间和频率的变化却是受非大气因素的扰动引起的.2.大气可以解释30天以下LOD非潮汐的大部分变化.3.极移分量30天以内的高频变化也主要由大气激发.x分量与大气的相关性要强于y分量,而且更为稳定,主要表现为平均时间尺度约为27天的波动,大气对这个波动的贡献可达70%.  相似文献   

9.
闫昊明  钟敏  朱耀仲 《天文学报》2005,46(4):452-459
大气相对固体地球的运动产生大气相对角动量,它的变化可以激发地球自转多时间尺度的变化.计算大气相对角动量现在采用两种不同的垂直积分高度,一种为从地形表面积分到顶层大气,称之为SP方法;另一种为从1000hPa积分到顶层大气,称之为BP方法,对采用这两种方法所得到的大气相对角动量进行了详细的比较.应用欧洲中距气象预报中心(ECMWF)和美国国家环境预报中心(NCEP)大气再分析数据,重新研究了大气相对角动量变化的时空特征.通过对大气相对角动量季节平均,季节振幅和时空特征的分析,得出ECMWF和NCEP的大气相对角动量变化对地球自转周年极移的影响,在亚洲季风区域和南极洲区域差别最为明显.  相似文献   

10.
用 198 4~ 1999年期间的地极坐标序列和两个大气角动量序列 ,分析了不同Chandler周期和品质因子Q的取值对Chandler摆动观测激发的功率谱密度 ,以及观测激发与大气激发之间的相干系数和相干相位的影响。结果表明 ,不同Chandler周期和品质因子Q的取值对观测激发的功率谱密度 ,以及观测激发与大气激发之间的相干系数有很大影响。因此 ,在分析Chandler摆动的观测激发与地球物理激发的关系时 ,不能仅以观测激发与某个地球物理激发序列 (如大气激发 )的更好逼近来选择Chandler摆动的最佳周期 ,因为Chandler摆动是多种地球物理激发共同作用的结果  相似文献   

11.
In addition to the atmosphere, the oceans play important roles in the excitation of the Chandler wobble. The contributions made by the Pacific Ocean, the Indian Ocean and the Atlantic Ocean from 1980 to 2005 to the excitation of the Chandler wobble are first and systematically researched by taking advantage of the data of the current velocity field and ocean floor pressure provided by the marine circulation model of the Estimating the Circulation and Climate of the Ocean (ECCO). Studies show that the contributions of the three oceans to the excitation of the Chandler wobble are different from one another: the excitation energy of the Pacific Ocean makes up about 22.2% of the observational excitation energy, the largest one among the three oceans, that of the Indian Ocean accounts for about 12.7% and that of the Atlantic Ocean amounts to about 7.1%, the smallest among the three great oceans. The remarkable increase in the excitation energy of the Chandler wobble by the Pacific Ocean may be possibly due to the effect of the strong ENSO event which occurred from 1982 to 1983.  相似文献   

12.
The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However,it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific,Atlantic and Indian Oceans to the excitation of the annual polar motion,based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape,the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans,while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.  相似文献   

13.
The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific, Atlantic and Indian Oceans to the excitation of the annual polar motion, based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape, the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans, while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.  相似文献   

14.
We apply complex Morlet wavelet transform to three polar motion dataseries, and derive quasi-instantaneous periods of the Chandler and annual wobbleby differencing the wavelet transform results versus the scale factor, and then findtheir zero points. The results show that the mean periods of the Chandler (annual)wobble are 430.71±1.07 (365.24±0.11) and 432.71±0.42 (365.23±0.18) mean solardays for the data sets of 1900-2001 and 1940-2001, respectively. The maximumrelative variation of the quasi-instantaneous period to the mean of the Chandlerwobble is less than 1.5% during 1900-2001 (3%--5% during 1920-1940), and thatof the annual wobble is less than 1.6% during 1900--2001. Quasi-instantaneous andmean values of Q are also derived by using the energy density-period profile of theChandler wobble. An asymptotic value of Q = 36.7 is obtained by fitting polynomialof exponential of σ~(-2) to the relationship between Q and σ during 1940--2001.  相似文献   

15.
A reasonable and quantitative result on the variation of polar wobble excited by the oceans is not available at present. Numerous researches have shown that atmospheric motion is the greatest excitation source for the seasonal variations in the polar wobble and that oceanic motion is one of the main remaining excitation sources. The excitation of variation in the annual polar wobble caused by oceans from 1992 to 2004 both globally and in latitude dependence, have been studied in depth by means of the new generation of SODA oceanic data assimilation (SODA-1.4.2 and SODA-1.4.3) and the ECCO oceanic data assimilation. The result shows that the variation in the seasonal polar wobble excited by the SODA oceans is very close to that of the residual after the action of the atmosphere and land water is deducted from the geodesic excitation function for a large part of the investigated time interval, and that there is overall agreement between the two as regards the annual amplitude and phase. In addition, in comparison with the result of early SODA-Bata 7, the new generation of SODA oceanic excitation has achieved obvious improvements. The latitude distributions of the excitations of the annual polar wobble by the SODA and ECCO oceans are consistent in the Greenwich direction, while having obvious differences in the direction of 90° E.  相似文献   

16.
The satellite NOAA-B (1980-43A) was launched in May 1980 into an orbit with perigee height near 260 km and apogee height 1440 km, at an inclination of 92.2°.The lifetime was 11 months. The orbit has been determined at 40 epochs between October 1980 and May 1981 from about 3000 radar and optical observations. The average orbital accuracy, radial and cross-track, was about 100 m, with rather better accuracy in the final 14 days.The variation of orbital inclination has been analysed to determine two good values of atmospheric rotation rate, namely 1.10 ± 0.10 rev day?1 at 300 km (average local time) and 1.15 ± 0.06 rev day?1 at 225 km (evening).The effect of atmospheric rotation on the precession of the orbital plane of an actual satellite has never previously been detected; it is clearly apparent for 1980-43A in its last days and conforms to the expected theoretical change.The variation of perigee height has been analysed to determine ten values of atmospheric density scale height, for heights of 280–370 km. These values, accurate to about 3%, exceed by 15% the values indicated by the COSPAR International Reference Atmosphere. Solar activity was higher in the years 1980–1981 than at any time since early 1958 and it appears that the CIRA model underestimates the density and density scale height at high levels of solar activity.  相似文献   

17.
Irradiance records of the Nimbus-7 and SMM satellites indicate a systematic downward trend of the solar constant of the order of a few hundredths of a percent and a slow variation of the solar constant on a time scale from days to weeks. The reason for the downward trend is not known as yet; it seems that the slow variation of the solar constant is linked with the solar rotation period via the effect of solar active regions. This paper deals with the connection between the solar constant variation and the age of the solar active regions. It seems that decreases in the solar constant took place when sunspot groups developing quickly in time and space with complex structure occurred on the solar disk. On the other hand, when the “older” groups with simple structure were dominant the value of the solar constant increased slightly or these groups could reduce the effects of “younger” groups.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号