首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The Erzgebirge Crystalline Complex (ECC) is a rare example where both‘crustal’eclogites and mantle-derived garnet-bearing ultramafic rocks (GBUs) occur in the same tectonic unit. Thus, the ECC represents a key complex for studying tectonic processes such as crustal thickening or incorporation of mantle-derived material into the continental crust. This study provides the first evidence that high-pressure metamorphism in the ECC is of Variscan age. Sm-Nd isochrons define ages of 333 ± 6 (Grt-WR), 337± 5 (Grt-WR), 360± 7 (Grt-Cpx-WR) (eclogites) and 353 ± 7 Ma (Grt-WR) (garnet-pyroxenite). 40Ar/39Ar spectra of phengite from two eclogite samples give plateau ages of 348 ± 2 and 355 ± 2 Ma. The overlap of ages from isotopic systems with blocking temperatures that differ by about 300 ° C indicates extremely fast tectonic uplift rates. Minimum cooling rates were about 50° C Myr-1. As a consequence, the closure temperature of the specific isotopic system is of minor importance, and the ages correspond to the time of high-pressure metamorphism. Despite textural equilibrium and metamorphic temperatures in excess of 800° C, clinopyroxene, garnet and whole rock do not define a three-point isochron in three of four samples. The metamorphic clinopyroxenes seem to have inherited their isotopic signature from magmatic precursors. Rapid tectonic burial and uplift within only a few million years might be the reason for the observed Sm-Nd disequilibrium. The εNd values of the eclogites (+4.4 to +6.9) suggest the protoliths were derived from a long-term depleted mantle, probably a MORB source, whereas the isotopically enriched garnet-pyroxenite (εNd–2.9) might represent subcontinental mantle material, emplaced into the crust prior to or during collision. The similarity of ages of the two different rock types suggests a shared metamorphic history.  相似文献   

2.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

3.
Equilibrium pressure–temperature (PT) conditions were estimated for kyanite‐bearing eclogite from Nové Dvory, Czech Republic, by using garnet–clinopyroxene thermometry and garnet–clinopyroxene–kyanite–coesite (or quartz) barometry. The estimated PT conditions are 1050–1150 °C, 4.5–4.9 GPa, which are mostly the same as previously estimated values for garnet peridotite from Nové Dvory (~1100–1250 °C, 5–6 GPa). Such very high‐P conditions, which correspond to about 150‐km depth, have been obtained for some garnet peridotites in the Gföhl Unit of the Bohemian Massif, but pressure conditions of eclogites associated with the garnet peridotites have not been so well constrained. This is the first substantial finding of eclogite that gives such very high‐P conditions in the Gföhl Unit of the Bohemian Massif. The Gföhl Unit mainly consists of felsic granulite or migmatitic gneiss, but these rock types do not display high‐P (>2.5 GPa) evidence. It is unclear whether both the peridotite body and surrounding felsic rocks in the Gföhl Unit were buried to very deep levels, but at least some garnet peridotites and associated eclogites in the Gföhl Unit have ascended from about 150‐km depth.  相似文献   

4.
Garnet‐bearing ultramafic rocks (GBUR) enclosed in granulite or high‐grade gneiss are rare, yet typical constituents of alpine‐type collisional orogens. The Bohemian Massif of the European Variscides is exceptional for the occurrence of a large variety of mantle‐derived rocks, including GBUR (garnet peridotite and garnet pyroxenite). GBUR occur in several metamorphic units belonging to both the Saxothuringian and the Moldanubian zones of the Bohemian Massif. The northernmost outcrops of GBUR in the Bohemian Massif are situated in the Saxonian Granulitgebirge Core Complex in the Saxothuringian zone and are the subject of this study. Thermobarometric results and exsolution textures imply that the Granulitgebirge GBUR belong to the ultra high temperature group of peridotites. They experienced a decompression‐cooling path being constrained by the following four stages: (i) ~1300–1400 °C and 32 kbar, (ii) 1000–1050 °C and 26 kbar, (iii) 900–940 °C and 22 kbar, and (iv) 860 °C and 12–13 kbar. Occasional layers of garnet pyroxenite within GBUR lenses are interpreted as high pressure cumulates that crystallized at 32–36 kbar by cooling below 1400 °C. The GBUR were most probably derived from upwelling asthenosphere and came in contact with crustal granulite at ~60 km depth. Slab break‐off is suggested here as the most probable cause for: (i) asthenosphere upwelling and cooling of the latter as well as (ii) ultra high temperature granulite facies metamorphism of the crustal host rocks. The Granulitgebirge‐type peridotite is very similar to the Mohelno‐type peridotite from the Gföhl unit, Moldanubian zone, in the southern part of the Bohemian Massif. In contrast, peridotite from the adjacent Erzgebirge (also within the Saxothuringian zone) is derived from the subcontinental mantle and much resembles the Nove Dvory‐type peridotite from the Gföhl unit (Moldanubian zone). The fact that the Saxothuringian and Moldanubian zones host the same types of mantle rocks (asthenospheric and lithospheric) of the same metamorphic ages suggests that the classic distinction into the Saxothuringian and Moldanubian zones cannot be supported, at least as far as high‐grade units hosting GBUR are concerned.  相似文献   

5.
Layers or bodies of intermediate granulite on scales from a centimetre to a hundred metres occur commonly within the felsic granulite massifs of the Bohemian Massif. Their origin is enigmatic in that they commonly have complex microstructures that are difficult to interpret, and therefore even the sequence of crystallization of minerals is uncertain. At Kle?, in the Blanský les massif, there is a revealing outcrop in a low‐strain zone in which it is clear that intermediate granulite can form by the interaction of felsic granulite with eclogite. The eclogite, retains garnet from its eclogite heritage, the grains at least partially isolated from the matrix by a plagioclase corona. The original omphacite‐dominated matrix of the eclogite now consists of recrystallized diopsidic clinopyroxene, orthopyroxene and plagioclase, with minor brown amphibole and quartz. The modification of the eclogite is dominated by the addition of just K2O and H2O, rather than all the elements that would be involved if the process was one of pervasive melt infiltrations. This suggests that the main process involved is diffusion, with the source being the felsic granulite, or local partial melt of the granulite. The diffusion occurred at ~950 °C and 12 kbar, with the main observed effects being (i) the un‐isolation and preferential destruction of the interior part of some of the garnet grains by large idiomorphic ternary feldspar; (ii) textural modification of the matrix primarily involving the recrystallization of clinopyroxene into large poikiloblasts containing inclusions of ternary plagioclase; and (iii) conversion of low‐K plagioclase in the matrix into ternary feldspar by incorporation of the diffused‐in K2O. The phase equilibria in the intermediate granulite are consistent with the chemical potential relationships that would be superimposed on the original eclogite by the felsic granulite at 950 °C and 12 kbar.  相似文献   

6.
J. V. Owen  J. Dostal 《Lithos》1996,38(3-4):259-270
Quartzofeldspathic rocks of the Gföhl gneiss from the Moldanubian of the Czech Republic span amphibolite-to granulite-facies, and are associated with eclogite. Protomylonitic fabrics related to terminal tectonic emplacement and reworking of the gneiss are common. Some non-mylonitic rocks, however, preserve early, prograde features (e.g., Opx-rimmed Hbl in metabasites), whereas others have characteristics generally associated with near-isothermal decompression (e.g., Pl-Opx moats separating Grt and Qtz in metabasites; Crd ± Spl coronas on Grt and aluminosilicates in metapelites); the unequivocal distinction between prograde and decompressional features in these rocks, however, may not be possible or even justified. For example, some metapelites contain growth-zoned (i.e., rimward increase in XMg) garnets that also record evidence (i.e., rimward decrease in XCa, compensated by the presence of reversely-zoned plagioclase in the same rock) of decompression. In rare instances, eclogitic rocks (P > 11 kbar) interpreted as tectonic enclaves within the gneiss also record mineralogic evidence of decompression (e.g., Crd-Opx-Spr coronas on pyrope). In metapelites, plagioclase-cored coronal garnets with high Prp/Grs ratios (˜ 2.5) record near-isobaric cooling from near the thermal maximum at a relatively shallow but undetermined crustal level.

Unlike Gföhl gneisses elsewhere (e.g., in Austria), the rocks described here do not preserve evidence of extreme metamorphic conditions. Texturally stable Grt-Bt pairs in non-mylonitic samples give Tmax < 750 °C. Pmax is not known, but prograde metamorphism apparently progressed from the kyanite to sillimanite fields, implying P ˜ 8 kbar at the maximum Grt-Bt temperature. At these conditions, dehydration of mafic gneiss occurred in the presence of a CO2-rich (XCO2 ˜ 0.85) pore fluid  相似文献   


7.
The presence of ternary feldspar in high‐grade meta‐igneous rocks, and the recognition of the thermometric significance of this mineral, has led recent researchers to postulate peak metamorphic temperatures in excess of 1000 °C. However, it needs to be established that such ternary feldspar is not in fact a survivor of the original high‐temperature crystallization of the igneous protolith. After exsolution, the host and lamellae in the ternary feldspar grains may be stable throughout subsequent history as long as recrystallization does not occur. Such a history may involve rehydration and metamorphism, including H2O‐saturated conditions, with the compositions and proportions of the host and lamellae being modified to reflect the PT conditions experienced. In the case of the high‐grade meta‐igneous rocks from the Moldanubian of the Bohemian Massif, some samples that contain ternary feldspar preserve a substantial measure of their igneous heritage. Orthopyroxene‐bearing granulites not only include types that are barely affected by the metamorphism, but also others that have undergone hydration of the igneous protolith prior to the development of a metamorphic overprint. A key to establishing the igneous origin of the ternary feldspar grains is their preservation in garnet that is either itself igneous, or of a relatively low‐temperature metamorphic origin. Applying the logic to the other ternary feldspar‐bearing meta‐igneous rocks deprives the Moldanubian of its ultrahigh temperature (UHT) metamorphic status.  相似文献   

8.
Migmatites with sub‐horizontal fabrics at the eastern margin of the Variscan orogenic root in the Bohemian Massif host lenses of eclogite, kyanite‐K‐feldspar granulite and marble within a matrix of migmatitic paragneiss and amphibolite. Petrological study and pseudosection modelling have been used to establish whether the whole area experienced terrane‐wide exhumation of lower orogenic crust, or whether smaller portions of higher‐pressure lower crust were combined with a lower‐pressure matrix. Kyanite‐K‐feldspar granulite shows peak conditions of 16.5 kbar and 850 °C with no clear indications of prograde path, whereas in the eclogite the prograde path indicates burial from 10 kbar and 700 °C to a peak of 18 kbar and 800 °C. Two contrasting prograde paths are identified within the host migmatitic paragneiss. The first path is inferred from the presence of staurolite and kyanite inclusions in garnet that contains preserved prograde zoning that indicates burial with simultaneous heating to 11 kbar and 800 °C. The second path is inferred from garnet overgrowths of a flat foliation defined by sillimanite and biotite. Garnet growth in such an assemblage is possible only if the sample is heated at 7–8 kbar to around 700–840 °C. Decompression is associated with strong structural reworking in the flat fabric that involves growth of sillimanite in paragneiss and kyanite‐K‐feldspar granulite at 7–10 kbar and 750–850 °C. The contrasting prograde metamorphic histories indicate that kilometre‐scale portions of high‐pressure lower orogenic crust were exhumed to middle crustal levels, dismembered and mixed with a middle crustal migmatite matrix, with the simultaneous development of a flat foliation. The contrasting PT paths with different pressure peaks show that tectonic models explaining high‐pressure boudins in such a fabric cannot be the result of heterogeneous retrogression during ductile rebound of the whole orogenic root. The PT paths are compatible with a model of heterogeneous vertical extrusion of lower crust into middle crust, followed by sub‐horizontal flow.  相似文献   

9.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   

10.
Strain patterns within mantle rocks and surrounding coarse‐grained felsic granulites from the Kutná Hora Crystalline Complex in the Variscan Bohemian Massif have been studied in order to assess their strain coupling. The studied rock association occurs within low‐strain domains surrounded by fine‐grained granulite and migmatite. The Doubrava peridotite contains closely spaced and steeply dipping layers of garnet clinopyroxenite, which are parallel to the NE–SW‐striking, high‐temperature foliation in nearby granulites, while the Úhrov peridotite lacks such layering. The Spa?ice eclogite is not associated with peridotite and shows upright folds of alternating coarse‐ and fine‐grained varieties bearing NE–SW‐striking axial planes. Electron back‐scattered diffraction measurements revealed full strain coupling between clinopyroxenites and coarse‐grained granulites in the S1 fabric that is superposed on the S0 fabric preserved in peridotites. The B‐type olivine lattice preferred orientation (LPO) characterizes the S0 fabric in peridotites and its reworking is strongly controlled by the presence of macroscopic clinopyroxenite layering. The S1 in clinopyroxenites and coarse‐grained granulites is associated with the LS‐type clinopyroxene LPO and prism <c> slip in quartz respectively. While the S1 fabric in these rock types is accompanied invariably by a sub‐vertical stretching lineation, the S1 fabric developed in reworked Úhrov peridotite is associated with strongly planar axial (010) type of olivine LPO. The peridotites with the S0 fabric are interpreted to be relicts of a fore‐arc mantle wedge hydrated to a various extent above the Saxothuringian subduction zone. The prograde metamorphism recorded in peridotites and eclogites occurred presumably during mantle wedge flow and was reaching UHP conditions. Strain coupling in the S1 fabric between clinopyroxenites and granulites at Doubrava and upright folding of eclogites at Spa?ice document a link between tectonic and magmatic processes during orogenic thickening, coeval with intrusions of the arc‐related calcalkaline suites of the Central Bohemian Plutonic Complex (c. 360–345 Ma). Juxtaposition of peridotites and granulites could be explained by a rheological heterogeneity connected to the development of clinopyroxenite layering in the upper mantle and a previously published model of a lithospheric‐scale transpressional arc system. It invokes vertical shearing along NE–SW trending, sub‐vertical foliations in the upper mantle that could have led to an emplacement of mantle bodies into the granulitized, orogenic root in the sub‐arc region. Clearly, such a transpressional arc system could represent an important pathway for an emplacement of deep‐seated rocks in the orogenic lower crust.  相似文献   

11.
Garnet–clinopyroxene intermediate granulites occur as thin layers within garnet–kyanite–K–feldspar felsic granulites of the St. Leonhard granulite body in the Bohemian Massif. They consist of several domains. One domain consists of coarser‐grained coexisting ternary feldspar, clinopyroxene, garnet, quartz and accessory rutile and zircon. The garnet has 16–20% grossular, and the clinopyroxene has 9% jadeite and contains orthopyroxene exsolution lamellae. Reintegrated ternary feldspar and the Zr‐in‐rutile thermometer give temperatures higher than 950 °C. Mineral equilibria modelling suggests crystallization at 14 kbar. The occurrence and preservation of this mineral assemblage is consistent with crystallization from hot dry melt. Between these domains is a finer‐grained deformed matrix made up of diopsidic clinopyroxene, orthopyroxene, plagioclase and K‐feldspar, apparently produced by reworking of the coarser‐grained domains. Embedded in this matrix, and pre‐dating the reworking deformation, are garnet porphyroblasts that contain clinopyroxene, feldspar, quartz, rutile and zircon inclusions. In contrast with the garnet in the coarser‐grained domains, the garnet generally has >30% grossular, the included clinopyroxene has 7–27% jadeite and the Zr content of rutile indicates much lower temperatures. Some of these high‐grossular garnet show zoning in Fe/(Fe + Mg), decreasing from 0.7 in the core to 0.6 and then increasing to 0.7 at the rim. These garnet are enigmatic, but with reference to appropriate pseudosections are consistent with localized new mineral growth from 650 to 850 °C and 10 to 17 kbar, or with equilibration at 20 kbar and 770 °C, modified by two‐stage diffusional re‐equilibration of rims, at 10–15 and 8 kbar. The strong pervasive deformation has obscured relationships that might have aided the interpretation of the origin of these porphyroblasts. The evolution of these rocks is consistent with formation by igneous crystallization and subsequent metamorphism to high‐T and high‐P, rather than an origin by ultrahigh‐T metamorphism. Regarding the petrographic complexity, combination of the high grossular garnet with the ternary feldspar to infer ultrahigh‐T metamorphism at high pressure is not justified.  相似文献   

12.
The exhumation of eclogite facies granulites (Omp–Plg–Grt–Qtz–Rt) in the Rychleby Mts, eastern Czech Republic, was a localised process initiated by buckling of crustal layers in a thickened orogenic root. Folding and post‐buckle flattening was followed by the main stage of exhumation that is characterized by vertical ductile extrusion. This process is documented by structural data, and the vertical ascent of rocks from a depth of c. 70 to c. 35 km is documented by metamorphic petrology. SHRIMP 206Pb/238U and 207Pb/206Pb evaporation zircon ages of 342 ± 5 and 341.4 ± 0.7 Ma date peak metamorphic conditions. The next stage of exhumation was associated with sideways flat thrusting associated with lateral viscous spreading of granulites and surrounding rocks over indenting adjacent continental crust at a depth of c. 35–30 km. This stage was associated with syntectonic intrusion of a granodiorite sill at 345–339 Ma, emplaced at a crustal depth of c. 25 km. The time required for cooling of the sill as well as for heating of the country rocks brackets this event to a maximum of 250 000 years. Therefore, similar ages of crystallization for the granodiorite magma and the peak of eclogite facies metamorphism of the granulite suggest a very short period of exhumation, limited by the analytical errors of the dating methods. Our calculations suggest that the initial exhumation rate during vertical extrusion was 3–15 mm yr?1, followed by an exhumation rate of 24–40 mm yr?1 during further uplift along a magma‐lubricated shear zone. The extrusion stage of exhumation was associated with a high cooling rate, which decreased during the stage of lateral spreading.  相似文献   

13.
Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet–hornblende–zoisite–chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks.

In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum-P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

PT estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740 °C. Grt + Opx from garnet-orthopyroxenite give 1.5–1.9 GPa at 740–770 °C, and Grt + Hbl + Zo + Chl from a zoisite-rich rock give 1.75 ± 0.25 GPa at 740 ± 30 °C, interpreted to represent recrystallization during uplift. In dunitic to harzburgitic compositions, early Ol + Opx ± Chl + Spl is succeeded by Ol ± Tlc ± Mgs, which in turn is overgrown by neoblasts of strain-free orthopyroxene, indicating temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine.

The ultramafic rocks in the Tromsø Nappe were locally strongly hydrated before subduction along with associated eclogites and metasedimentary rocks during the early (Ordovician) stages of the Caledonian orogeny.  相似文献   


14.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

15.
Metabasic rocks from the Adula Nappe in the Central Alps record a regional high‐pressure metamorphic event during the Eocene, and display a regional variation in high‐pressure mineral assemblages from barroisite, or glaucophane, bearing garnet amphibolites in the north to kyanite eclogites in the central part of the nappe. High‐pressure rocks from all parts of the nappe show the same metamorphic evolution of assemblages consistent with prograde blueschist, high‐pressure amphibolite or eclogite facies conditions followed by peak‐pressure eclogite facies conditions and decompression to the greenschist or amphibolite facies. Average PT calculations (using thermocalc ) quantitatively establish nested, clockwise P–T paths for different parts of the Adula Nappe that are displaced to higher pressure and temperature from north to south. Metamorphic conditions at peak pressure increase from about 17 kbar, 640 °C in the north to 22 kbar, 750 °C in the centre and 25 kbar, 750 °C in the south. The northern and central Adula Nappe behaved as a coherent tectonic unit at peak pressures and during decompression, and thermobarometric results are interpreted in terms of a metamorphic field gradient of 9.6 ± 2.0 °C km?1 and 0.20 ± 0.05 kbar km?1. These results constrain the peak‐pressure position and orientation of the nappe to a depth of 55–75 km, dipping at an angle of approximately 45° towards the south. Results from the southern Adula Nappe are not consistent with the metamorphic field gradient determined for the northern and central parts, which suggests that the southern Adula Nappe may have been separated from central and northern parts at peak pressure.  相似文献   

16.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   

17.
Mafic granulite, generated from eclogite, occurs in felsic granulite at Kle?, Blanský les, in the Bohemian Massif. This is significant because such eclogite is very rare within the felsic granulite massifs. Moreover, at this locality, strong interaction has occurred between the mafic granulite and the adjacent felsic granulite producing intermediate granulite, such intermediate granulite being of enigmatic origin elsewhere. The mafic granulite involves garnet from the original eclogite, containing large idiomorphic inclusions of omphacite, plagioclase and quartz, as well as rutile. The edge of the garnet is replaced by a plagioclase corona, with the garnet zoned towards the corona and also the inclusions. The original omphacite–quartz–?plagioclase matrix has recrystallized to coarse‐grained polygonal (‘equilibrium’‐textured) plagioclase‐diopsidic clinopyroxene–orthopyroxene also with brown amphibole commonly in the vicinity of garnet. Somewhat larger quartz grains are embedded in this matrix, along with minor ilmenite, rutile and zircon. Combining the core garnet composition with core inclusion compositions gives a pressure of the order of 18 kbar from assemblage and isopleths on a P?T pseudosection, with temperature poorly constrained, but most likely >900 °C. From this P?T pseudosection, the recrystallization of the matrix took place at ~12 kbar, and from Zr‐in‐rutile thermometry, at relatively hot conditions of 900–950 °C. It is largely at these conditions that the eclogite/mafic granulite interacted with the felsic granulite to make intermediate granulite (see next paper).  相似文献   

18.
Exsolution lamellae of garnet in clinopyroxene and orthopyroxene porphyroclasts from garnet pyroxenites in the Moldanubian zone were studied to elucidate the pressure–temperature conditions of the exsolution process and to reconstruct the burial and exhumation path of ultramafic rocks in the Variscan orogen. The porphyroclasts occur in a fine-grained matrix with metamorphic fabrics, which consists of clinopyroxene and small amounts of garnet, orthopyroxene and amphibole. The clinopyroxene porphyroclasts contain garnet + orthopyroxene lamellae as well as ilmenite rods that have orientation parallel to (100) planes of the porphyroclasts. Orthopyroxene porphyroclasts host garnet and clinopyroxene lamellae, which show the same lattice preferred orientation. In both cases, lamellar orthopyroxene, clinopyroxene and garnet were partially replaced by secondary amphibole. Composition of exsolution phases and that of host pyroxene were reintegrated according to measured modal proportions and demonstrate that the primary pyroxene was enriched in Al and contained 8–11 mol.% Tschermak components. Conventional thermobarometry and thermodynamic modelling on the reintegrated pyroxene indicate that primary clinopyroxene and orthopyroxene megacrysts crystallized at 1300–1400 °C and 2.2–2.5 GPa. Unmixing and exsolution of garnet and a second pyroxene phase occurred in response to cooling and pressure increase before the peak pressure of 4.5–5.0 GPa was reached at ∼1100 °C. This scenario is consistent with a burial of hot upper-mantle ultramafics into a cold subcratonic environment and subsequent exhumation through 900 °C and 2.2–3.3 GPa, when the pyroxenites would have partially recrystallized during tectonic incorporation into eclogites and felsic granulites.  相似文献   

19.
Metamorphic rocks from two sections through the North Andean Cordillera Real in Ecuador contain phengites as relics of high-pressure (HP) metamorphism. Their maximum Si contents per formula unit are (1) 3.25 in Al-rich metapelites, (2) 3.35 in ordinary metapelites and garnet-rich metabasites, and (3) 3.45 in garnet-bearing orthogneisses. Detailed pressure–temperature paths were derived by calculating PT pseudosections. Garnet-bearing metapelite and metabasite yielded a PT path starting at 1.4 GPa and 525°C. Peak temperature conditions were 560°C at <1.4 GPa. The retrograde path passed through 0.7–0.8 GPa at 500°C. An adjacent metagranitoid experienced a similar PT evolution at slightly lower temperatures of about 30–50°C. This is the first reported occurrence of HP metamorphism in the Cordillera Real; it is widespread and evidently was the result of continental collision. We hypothesize that a single microcontinent collided with the South American continental margin in Early Cretaceous time. In contrast to our findings, previous models have simply suggested the amalgamation of several terranes in the late Mesozoic or earlier in the region of Ecuador. Therefore, we propose that a widespread search for HP relics should be undertaken. Such relics provide a general criterion for defining subducted terranes and their respective boundaries.  相似文献   

20.
Eclogite, felsic orthogneiss and garnet–staurolite metapelite occur in a 5 km long profile in the area of Mi?dzygórze in the Orlica–?nie?nik dome (Bohemian Massif). Petrographic observations and mineral equilibria modelling, in the context of detailed structural work, are used to document the close juxtaposition of high‐pressure and medium‐pressure rocks. The structural succession in all lithologies shows an early shallow‐dipping fabric, S1, that is folded by upright folds and overprinted by a heterogeneously developed subvertical foliation, S2. Late recumbent folds associated with a weak shallow‐dipping axial‐plane cleavage, S3, occur locally. The S1 fabric in the eclogite is defined by alternation of garnet‐rich (grs = 22–29 mol.%) and omphacite‐rich (jd = 33–36 mol.%) layers with oriented muscovite (Si = 3.26–3.31 p.f.u.) and accessory kyanite, zoisite, rutile and quartz, indicating conditions of ~19–22 kbar and ~700–750 °C. The assemblage in the retrograde S2 fabric is formed by amphibole, plagioclase, biotite and relict rutile surrounded by ilmenite and sphene that is compatible with decompression and cooling from ~9 kbar and ~730 °C to 5–6 kbar and 600–650 °C. The S3 fabric contains in addition domains with albite, chlorite, K‐feldspar and magnetite indicating cooling to greenschist facies conditions. The metapelites are composed of garnet, staurolite, muscovite, biotite, quartz, ilmenite and chlorite. Chemical zoning of garnet cores that contain straight ilmenite and staurolite inclusion trails oriented perpendicular to the external S2 fabric indicates prograde growth, from ~5 kbar and ~520 °C to ~7 kbar and ~610 °C, during the formation of the S1 fabric. Inclusion trails parallel with the S2 fabric at garnet and staurolite rims are interpreted to be a continuation of the prograde path to ~7.5 and ~630 °C in the S2 fabric. Matrix chlorite parallel to the S2 foliation indicates that the subvertical fabric was still active below 550 °C. The axial planar S2 fabrics developed during upright folding are associated with retrogression of the eclogite under amphibolite facies conditions, and with prograde evolution in the metapelites, associated with their juxtaposition. The shared part of the eclogite and metapelite PT paths during the development of the subvertical fabric reflects their exhumation together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号