首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用搭载在美国Aqua卫星上的大气红外探测仪(AIRS)观测资料反演的全球甲烷(CH_4)产品和NCEP再分析资料,分析了2003~2014年青藏高原上空CH_4的时空变化特征,探讨了夏季CH_4高值变化与季风的关系。研究结果表明:就青藏高原整体而言,CH_4浓度随高度增加递减;对流层中高层CH_4含量季节变化较为明显,其平均浓度在7~9月处于高值,6月、10月次之,其余月份处于低值。2003~2014年CH_4含量呈逐年上升趋势,年增长率约为4.66ppb(10-9)。高原上空CH_4空间分布分析显示,高原北部CH_4浓度高于南部地区。夏季风期间,随着高原上的强对流输送和上空南亚高压的阻塞,对流层中高层CH_4浓度明显增加并不断积累,在8月底至9月初出现最大值。在分析季风指数的基础上发现,夏季季风影响下的强对流输送是高原对流层中高层CH_4高值形成的主要原因之一,对流层中高层CH_4浓度最大值出现时间较季风指数的峰值滞后约半至一个月,随着夏季风的撤退,CH_4浓度高值迅速降低。  相似文献   

2.
Precipitation changes over the Indo-Pacific during El Niño events are studied using an Atmospheric General Circulation Model forced with sea-surface temperature (SST) anomalies and changes in atmospheric CO2 concentrations. Linear increases in the amplitude of the El Niño SST anomaly pattern trigger nonlinear changes in precipitation amounts, resulting in shifts in the location and orientation of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). In particular, the maximum precipitation anomaly along the ITCZ and SPCZ shifts eastwards, the ITCZ shifts south towards the equator, and the SPCZ becomes more zonal. Precipitation in the equatorial Pacific also increases nonlinearly. The effect of increasing CO2 levels and warming SSTs is also investigated. Global warming generally enhances the tropical Pacific precipitation response to El Niño. The precipitation response to El Niño is found to be dominated by changes in the atmospheric mean circulation dynamics, whereas the response to global warming is a balance between dynamic and thermodynamic changes. While the dependence of projected climate change impacts on seasonal variability is well-established, this study reveals that the impact of global warming on Pacific precipitation also depends strongly on the magnitude of the El Niño event. The magnitude and structure of the precipitation changes are also sensitive to the spatial structure of the global warming SST pattern.  相似文献   

3.
The Holocene history of the northwest Australian monsoon is considered in the light of new stratigraphic findings from the southern margin of the monsoon regime. A discussion of the present-day climatology of northwestern Australia and synoptic controls on precipitation in the areas at the southern margin of the monsoon regime is given as background information for the interpretation of stratigraphic findings from swamp and alluvial sequences. The stratigraphic findings point to little change in the intensity of the northwest Australian monsoon since ca. 6.5 ka. A more tentative inference drawn from the field evidence is that the monsoon activity may well have been reduced in this region during the Early Holocene; during this time insolation levels were also reduced. The possible relationship of the northwest Australian monsoon to insolation levels is explored. It is clear that monsoon behavior cannot be accounted for as a simple linear response of monsoon intensity to variations in insolation. Possible controls are discussed with particular emphasis on the plausibility of changes in the damping of convective motions providing the mechanism. Gill's model of heat-induced circulation is used to provide some evidence in favour of this conjecture.  相似文献   

4.
We compare paleoclimate proxy records from central Greenland and the Aegean Sea to offer new insights into the causes, timing, and mechanisms of Holocene atmosphere-ocean interactions. A direct atmospheric link is revealed between Aegean sea surface temperature (SST) and high-latitude climate. The major Holocene events in our proxies of Aegean SST and winter/spring intensity of the Siberian High (GISP2 K+ record) follow an ~2300 year spacing, recognised also in the (14C record and in worldwide Holocene glacier advance phases, suggesting a solar modulation of climate. We argue that the primary atmospheric response involved decadal-centennial fluctuations in the meridional pressure gradient, driving Aegean SST events via changes in the strength, duration, and/or frequency of northerly polar/continental air outbreaks over the basin. The observed natural variability should be accounted for in predictions of future climate change, and our timeframe for the Aegean climate events in addition provides an independent chronostratigraphic argument to Middle Eastern archaeological studies.  相似文献   

5.
Various proxy data reveal that in many regions of the Northern Hemisphere (NH), the middle Holocene (6 kyr BP) was warmer than the early Holocene (8 kyr BP) as well as the later Holocene, up to the end of the pre-industrial period (1800 AD). This pattern of warming and then cooling in the NH represents the response of the climate system to changes in orbital forcing, vegetation cover and the Laurentide Ice Sheet (LIS) during the Holocene. In an attempt to better understand these changes in the climate system, the McGill Paleoclimate Model (MPM) has been coupled to the dynamic global vegetation model known as VECODE (see Part I of this two-part paper), and a number of sensitivity experiments have been performed with the green MPM. The model results illustrate the following: (1) the orbital forcing together with the vegetation—albedo feedback result in the gradual cooling of global SAT from about 6 kyr BP to the end of the pre-industrial period; (2) the disappearance of the LIS over the period 8–6 kyr BP, associated with vegetation—albedo feedback, allows the global SAT to increase and reach its maximum at around 6 kyr BP; (3) the northern limit of the boreal forest moves northward during the period 8–6.4 kyr BP due to the LIS retreat; (4) during the period 6.4–0 kyr BP, the northern limit of the boreal forest moves southward about 120 km in response to the decreasing summer insolation in the NH; and (5) the desertification of northern Africa during the period 8–2.6 kyr BP is mainly explained by the decreasing summer monsoon precipitation.  相似文献   

6.
Recently, W.F. Ruddiman (2003, Climatic Change, Vol. 61, pp. 261–293) suggested that the anthropocene, the geological epoch of significant anthropospheric interference with the natural Earth system, has started much earlier than previously thought (P. I. Crutzen and E. F. Stoermer, 2000, IGBP Newsletter, Vol. 429, pp. 623–628). Ruddiman proposed that due to human land use, atmospheric concentrations of CO2 and CH4 began to deviate from their natural declining trends some 8000 and 5000 years ago, respectively. Furthermore, Ruddiman concluded that greenhouse gas concentrations grew anomalously thereby preventing natural large-scale glaciation of northern North America that should have occurred some 4000–5000 years ago without human interference. Here we would like to comment on (a) natural changes in atmospheric CO2 concentration during the Holocene and (b) on the possibility of a Holocene glacial inception. We substantiate our comments by modelling results which suggest that the last three interglacials are not a proper analogue for Holocene climate variations. In particular, we show that our model does not yield a glacial inception during the last several thousand years even if a declining trend in atmospheric CO2 was assumed.  相似文献   

7.
We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Ni?a events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Ni?o events. The impact of ice-sheet melting may have offset the impact of insolation on El Ni?o Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records.  相似文献   

8.
Variations in the deep-sea carbon reservoir have been invoked to explain the observed atmospheric carbon dioxide (CO2) changes during glacial-interglacial cycles. In order to distinguish between the quantity of organic matter remineralized in the deep-sea and that permanently removed into sediments, we compared the bulk- and organic carbon-accumulation rates in Holocene and glacial sediments deposited below the oxygen minimum layer with total- and organic carbon fluxes to the deep Arabian Sea from continuous sediment trap deployments. This comparison shows that the mass of organic carbon remineralized at the sediment water interface is mainly a function of the bulk sediment flux. The oxygen consumed by the organic carbon remineralization is of the order of the observed oxygen deficiency of the modern deep Arabian Sea water. We use the evidence from the northern Indian Ocean to speculate on the possible effect of abiogenic mineral flux on the removal of organic carbon from upper layers of the world ocean to the deep-sea. We assume that if the bulk accumulation rate (not primary productivity) influences the flux of organic carbon (that is fixed from the atmosphere by marine organisms), then mineral matter flux will exert a significant control over atmospheric CO2 contents. Model calculations incorporating transient changes in global bulk flux, caused by natural or anthropogenic changes, show that significant proportions of the observed changes in atmospheric CO2 contents can be explained by this mechanism.This paper was presented at Clima Locarno 90, the International Conference on Past and Present Climate Dynamics: Reconstruction of Rates of Change, held in Locarno, Switzerland, September 24 to 28, 1991, organized by the Swiss National Climate Program — ProClim, with support from the Swiss Academy of Sciences. Guest editor for these papers is Dr. K. Kelts Offprint requests to: F Sirocko  相似文献   

9.
A new, biogeochemical model of ice age cycles is developed and applied which explains major features of climate variations in the late Quaternary —rapid ice age terminations, large glacial-interglacial amplitudes and 100-kyr cycles — in a way consistent with the paleorecord. Existing models which invoke non-linear, ice-sheet-earth-crust dynamics to explain ice age cycles are not consistent with simultaneous terminations in both hemispheres and other phase relationships implied by the paleorecord. The present model relates climate change to oscillations of oceanic primary (new) production controlled by the availability of inorganic nitrogen. Large oscillations follow shelf erosion events triggered by small sea-level drops. These drops are due to glacial buildup associated with a minimum in Northern Hemisphere insolation. Rapid global warming at terminations is initiated by open ocean denitrification events leading to new production crashes and rapid modification of atmospheric trace gas concentrations (CO2, DMS, N2O). Other feedbacks of the land-ice-atmosphere-ocean system control the rest of the climate cycle. 100-kyr cycles derive from orbital pacemaking of the strong, low-frequency model response. Results suggest that the climate regime transition near 800 kyr B.P. may be related to changes in the continental shelf slope, that existing chronologies based on orbital tuning may need to be revised and that temporary increases in atmospheric N2O concentrations at terminations, due to the denitrification events, may have caused significant greenhouse warming. A spike of elevated N2O concentration at terminations may be recorded in polar ice.  相似文献   

10.
The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO2 and CH4 content were prescribed. The experiment reveals an early optimum (9–8 kyr BP) in most regions, followed by a 1–3°C decrease in mean annual temperatures, a reduction in summer precipitation and an expansion of sea-ice cover. These results are in general agreement with proxy data. Over the continents, the timing of the largest temperature response in summer coincides with the maximum insolation difference, while over the oceans, the maximum response is delayed by a few months due to the thermal inertia of the oceans, placing the strongest cooling in the winter half year. Sea ice is involved in two positive feedbacks (ice-albedo and sea-ice insulation) that lead regionally to an amplification of the thermal response in our model (7°C cooling in Canadian Arctic). In some areas, the tundra-taiga feedback results in intensified cooling during summer, most notably in northern North America. The simulated sea-ice expansion leads in the Nordic Seas to less deep convection and local weakening of the overturning circulation, producing a maximum winter temperature reduction of 7°C. The enhanced interaction between sea ice and deep convection is accompanied by increasing interannual variability, including two marked decadal-scale cooling events. Deep convection intensifies in the Labrador Sea, keeping the overall strength of the thermohaline circulation stable throughout the experiment.  相似文献   

11.
Results are first presented from an analysis of a global coupled climate model regarding changes in future mean and variability of south Asian monsoon precipitation due to increased atmospheric CO2 for doubled (2 × CO2) and quadrupled (4 × CO2) present-day amounts. Results from the coupled model show that, in agreement with previous studies, mean area-averaged south Asian monsoon precipitation increases with greater CO2 concentrations, as does the interannual variability. Mechanisms producing these changes are then examined in a series of AMIP2-style sensitivity experiments using the atmospheric model (taken from the coupled model) run with specified SSTs. Three sets of ensemble experiments are run with SST anomalies superimposed on the AMIP2 SSTs from 1979–97: (1) anomalously warm Indian Ocean SSTs, (2) anomalously warm Pacific Ocean SSTs, and (3) anomalously warm Indian and Pacific Ocean SSTs. Results from these experiments show that the greater mean monsoon precipitation is due to increased moisture source from the warmer Indian Ocean. Increased south Asian monsoon interannual variability is primarily due to warmer Pacific Ocean SSTs with enhanced evaporation variability, with the warmer Indian Ocean SSTs a contributing but secondary factor. That is, for a given interannual tropical Pacific SST fluctuation with warmer mean SSTs in the future climate, there is enhanced evaporation and precipitation variability that is communicated via the Walker Circulation in the atmosphere to the south Asian monsoon to increase interannual precipitation variability there. This enhanced monsoon variability occurs even with no change in interannual SST variability in the tropical Pacific.  相似文献   

12.
The response of the LLN 2-D climate model to the insolation and CO2 forcings during the Eemian interglacial is compared to reconstructions obtained from deep-sea cores drilled in the Norwegian Sea and in the North Atlantic. Both reconstructions and modeling results show a decrease of sea-surface temperature (SST) in the higher latitudes (70–75 °N zonal belt for the model and the Norwegian Sea for the proxy records), associated with a more moderate cooling at lower latitudes (50–55 °N and North Atlantic), at the middle of isotopic substage 5e, several millenia before the beginning of continental ice-sheet growth. Such a comparison between the simulated SST and ice volume of the Northern Hemisphere has been extended to the whole last glacial-interglacial cycle. The influence of the insolation forcing on SST and the shortcomings of the model due to its zonal character are discussed. Received: 6 July 1995/Accepted: 19 December 1995  相似文献   

13.
本文利用全球三维大气耦合混合层海洋环流模式模拟大气中二氧化碳浓度增加对土壤湿度的影响。敏感试验(2×CO_2)与控制试验(1×CO_2)对照表明,当大气中二氧化碳浓度增加时,全球土壤湿度在各季发生明显变化。其中两半球低纬度地区在冬季土壤温度变温,两半球中纬度地区则在各季土壤湿度变干,北半球高纬度地区土壤湿度在夏季变干,其余各季变温。分析大气中二氧化碳浓度增加造成土壤温度全球变化的可能物理机制表明,地面水循环和热量循环是重要的因素。  相似文献   

14.
In the context of 1982-1994 NCEP/NCAR wind at 12-level isobaric surfaces on a global basis calculation is made of the barotropic(mass-weighed vertical mean) and baroclinic components(difference between the actual wind at each level and barotropic component) of atmospheric flow fields,followed by dealing with the distribution features of barotropic and baroelinie patterns globally in winter and summer,alongside with the classification of global monsoons according to the surface barotropic/baroclinic patterns.Evidence suggests that the seasonal variation of both components will lead to the reversal of a prevailing wind between winter and summer,thus causing a related monsoon:the baroclinie flow pattern is indicative of a thermal circulation driven by atmospheric inhomogeneous heating chiefly from land-sea thermal contrast whilst the barotropic counterpart represents the result mainly from dynamic effects,which is helpful to the understanding of monsoon nature.And further study shows that the classical monsoon regions in tropical Asia,Africa and South America fall into a baroclinic category,those in the bi-hemispheric subtropical Pacific into a barotropic type and the East Asian subtropical monsoon generated underthe joint action of both the patterns falls into a mixed category.  相似文献   

15.
An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 yr-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4 -treated plots than in KNO3-treated plots. The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH+4 , rather than NO3- , amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+ -N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.  相似文献   

16.
The atmospheric general circulation model coupled to the mixed layer ocean model has been used to simulate thechanges of the global soil moisture.Comparing the simulated results with observations,it is shown that the model is ca-pable of doing sensitive experiments about the carbon dioxide change.The 2×CO_2/1×CO_2 comparison shows that there are the obvious changes of the soil moisture in the global forfour seasons.There are the wet soil moisture in the lower latitudes of both hemispheres and dry soil moisture in the mid-dle latitudes of both hemispheres for four seasons.The dry soil moisture in summer and wet in other seasons are foundin the northern higher latitudes.The analyses of the physical feedbacks responsible for the CO_2-induced changes of soil moisture show that the bud-gets of the surface water and heat are the important factors.  相似文献   

17.
Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7 C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6 C and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23 C and 4.59 C. The sensitivity of precipitation to the changes of TAS is~2.3% C-1 , which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.  相似文献   

18.
Minimizing the future impacts of climate change requires reducing the greenhouse gas (GHG) load in the atmosphere. Anthropogenic emissions include many types of GHG’s as well as particulates such as black carbon and sulfate aerosols, each of which has a different effect on the atmosphere, and a different atmospheric lifetime. Several recent studies have advocated for the importance of short timescales when comparing the climate impact of different climate pollutants, placing a high relative value on short-lived pollutants, such as methane (CH4) and black carbon (BC) versus carbon dioxide (CO2). These studies have generated confusion over how to value changes in temperature that occur over short versus long timescales. We show the temperature changes that result from exchanging CO2 for CH4 using a variety of commonly suggested metrics to illustrate the trade-offs involved in potential carbon trading mechanisms that place a high value on CH4 emissions. Reducing CH4 emissions today would lead to a climate cooling of approximately ~0.5 °C, but this value will not change greatly if we delay reducing CH4 emissions by years or decades. This is not true for CO2, for which the climate is influenced by cumulative emissions. Any delay in reducing CO2 emissions is likely to lead to higher cumulative emissions, and more warming. The exact warming resulting from this delay depends on the trajectory of future CO2 emissions but using one business-as usual-projection we estimate an increase of 3/4 °C for every 15-year delay in CO2 mitigation. Overvaluing the influence of CH4 emissions on climate could easily result in our “locking” the earth into a warmer temperature trajectory, one that is temporarily masked by the short-term cooling effects of the CH4 reductions, but then persists for many generations.  相似文献   

19.
Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16×CO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (??precipitation-wind paradox??). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.  相似文献   

20.
We describe the evolutionary response of northern and southern hemisphere summer monsoons to orbital forcing over the past 280,000 years using a fully coupled general circulation ocean-atmosphere model in which the orbital forcing is accelerated by a factor of 100. We find a strong and positive response of northern (southern) summer monsoon precipitation to northern (southern) summer insolation forcing. On average, July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence and are approximately in phase with June (December) insolation maxima, implying an average lag between forcing and response of about 30° of phase at the precession period. The average lag increases to over 40° for 4-month precipitation averages, JJAS (DJFM). The phase varies from region to region. The average JJA (DJF) land temperature maxima also lag the June orbital forcing maxima by about 30° of phase, whereas ocean temperature maxima exhibit a lag of about 60° of phase at the precession period. Using generalized measures of the thermal and hydrologic processes that produce monsoons, we find that the summer monsoon precipitation indices for the six regions all fall within the phase limits of the process indices for the respective hemispheres. Selected observational studies from four of the six monsoon regions report approximate in-phase relations of summer monsoon proxies to summer insolation. However other observational studies report substantial phase lags of monsoon proxies and a strong component of forcing associated with glacial-age boundary conditions or other factors. An important next step will be to include glacial-age boundary condition forcing in long, transient paleoclimate simulations, along with orbital forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号