共查询到20条相似文献,搜索用时 15 毫秒
3.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño. 相似文献
4.
A stochastic model is fitted to the observed NINO3.4 time series between 1951–1995. The model is nothing more than the complex version of a first-order autoregressive process. The autocorrelation of this stochastic oscillator model is an exponentially decaying cosine, specified by three parameters: a period, a decay time, and a phase shift. It fits the observed NINO3.4 autocorrelation quite well. Anomalies during an El Niño can be characterized to a large extent by a single, irregularly oscillating, index. Equatorial wave dynamics and delayed-oscillator models have been used to explain this behaviour, and it has been suggested that El Niño might be a stable phenomenon excited by weather noise. Assuming this is the case, the stochastic oscillator has a direct physical interpretation: the parameters of the oscillation can be linked to dynamical models of the delayed-oscillator type, and the noise terms represent random influences, such as intraseasonal oscillations. Long Monte Carlo simulations with the stochastic oscillator show substantial decadal variability and variation in predictability. The observed decadal variability is comparable, except for the rather large rise in the long-term mean around 1980. The observed seasonal dependence of El Niño behaviour is not compatible with the natural variability of a stationary stochastic oscillator. Formulating the model in terms of standardized anomalies takes into account some of the seasonal dependence. A stochastic oscillator forecast model has a skill approaching that of more comprehensive statistical models and may thus serve as an appropriate baseline for the skill of El Niño forecasting systems. 相似文献
5.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena. 相似文献
6.
A relation between the timing of the El Niño onset and its subsequent evolution is examined by emphasizing its association with the Indian Ocean (IO) SST variation. Two types of El Niño events based on the timing of their onset are classified and their characteristics are examined and compared. In general, spring onset (SP) events grow greater in magnitude and their evolutions have a faster transition. On the contrary, summer onset (SU) events are relatively weaker in magnitude and have a slower transition. Moreover, in contrast to the SU events, the SP events have a strong tendency for accompanying an IO dipole and basin-wide type of warming pattern in the El Niño developing and mature phases, respectively. It is demonstrated here that the distinctive evolutions in transition phase of the two events are resulted from the difference in IO SST. The warm IO SST in the SP El Niño event, lead an anomalous easterlies over the western Pacific, which forces a fast termination of El Niño events. 相似文献
7.
Theoretical and Applied Climatology - The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical... 相似文献
8.
As in the observed record, the termination of El Niño in the coupled IPCC-AR4 climate models involves meridional processes tied to the seasonal cycle. These meridional processes both precondition the termination of El Niño events in general and lead to a peculiar termination of extreme El Niño events (such as those of 1982–83 and 1997–98), in which the eastern equatorial Pacific warm sea surface temperature anomalies (SSTA) persist well into boreal spring/early-summer. The mechanisms controlling the peculiar termination of extreme El Niño events, which involves to the development of an equatorially centred intertropical convergence zone, are consistent across the four models that exhibit extreme El Niños and observational record, suggesting that this peculiar termination represents a general feature of extreme El Niños. Further, due to their unusual termination, extreme El Niños exhibit an apparent eastward propagation of their SSTA, which can strongly influence estimates of the apparent propagation of ENSO over multi-decadal periods. Interpreting these propagation changes as evidence of changes in the underlying dynamical feedbacks behind El Niño could therefore be misleading, given the strong influence of a single extreme event. 相似文献
9.
Previous studies suggested that the wintertime SST in the North Pacific that are generated by the concurrent North Pacific Oscillation (NPO) are able to force El Niño during subsequent winter via the so-called ‘seasonal footprinting mechanism’ (SFM). We examine how the NPO effectively generates the El Niño via the SFM in the observations and models. The occurrence ratio for El Niño under conditions of NPO forcing during the previous winters is about 41 % for the period of 61 years (1949–2009), indicating that the atmospheric forcing from the mid-latitudes through the SFM does not always trigger an El Niño. We observed certain favorable conditions under which the SFM may effectively induce El Niño. We directly compared these observations with two cases: when the wintertime NPO leads to El Niño during the following winter through the SFM, and when the wintertime NPO is not followed by El Niño. Our analysis demonstrates that the spatial structures of the NPO, associated wind speed and net heat flux in the northeast Pacific, differ between the two cases. Such differences determine the existence of a footprint SST in the northeastern Pacific during the late spring and summer, which plays a key role in initiating the El Niño via the projection of westerly wind stress anomalies onto the equatorial Pacific during the same seasons. By conducting linear baroclinic model experiments, it is found that the positions of La Niña SST forcing during the previous winter are able to modify the spatial structures of the NPO, which produces favorable conditions for the El Niño during subsequent winter via the SFM. 相似文献
12.
Teleconnections associated with warm El Niño/southern oscillation (ENSO) events in 20 climate model intercomparison project 5 (CMIP5) models have been compared with reanalysis observations. Focus has been placed on compact time and space indices, which can be assigned a specific statistical confidence. Nearly all of the models have surface temperature, precipitation and 250 hPa geopotential height departures in the Tropics that are in good agreement with the observations. Most of the models also have realistic anomalies of Northern Hemisphere near-surface temperature, precipitation and 500 hPa geopotential height. Model skill for these variables is significantly related to the ability of a model to accurately simulate Tropical 250 hPa height departures. Additionally, most models have realistic temperature and precipitation anomalies over North America, which are linked to a model’s ability to simulate Tropical 250 hPa and Northern Hemisphere 500 hPa height departures. The skills of temperature and precipitation departures over the Northern Hemisphere and North America are associated with the ability to realistically simulate realistic ENSO frequency and length. Neither horizontal nor vertical resolution differences for either the model atmosphere or ocean are significantly related at the 95 % level to variations in El Niño simulation quality. Overall, recent versions of earlier models have improved in their ability to simulate El Niño teleconnections. For instance, the average model skills of temperature and precipitation for the Tropics, Northern Hemisphere and North America for 11 CMIP5 models are all larger than those for prior versions. 相似文献
13.
In recent years, El Nio Modoki (a type of pseudo-El Nio) has been distinguished as a unique large-scale ocean warming phenomenon happening in the central tropical Pacific that is quite different from the traditional El Nio. In this study, EOF analysis was used to successfully separate El Nio and El Nio Modoki. The abilities of the NINO3 index, NINO3.4 index, NINO1+2 index and NINO4 index in characterizing El Nio were explored in detail. The resulting suggestion was that, comparatively, NINO3 is the op... 相似文献
15.
In the past three decades, the strongest central Pacific (CP) El Niño event was observed in 2009–2010 by satellites. When intensity of this CP El Niño reached its maximum, large diurnal variations of sea surface temperature (SST) were also observed from tropical atmosphere ocean moorings in the central equatorial Pacific. Solar radiation in the equatorial central Pacific is larger than 140 W/m 2, which leads to the amplitude of diurnal cycle of SST primarily determined by large-scale wind patterns. Intraseasonal westerly wind events (WWEs) can lead to an eastward displacement of the warm pool and also can weaken the trade winds in central Pacific. When the occurrence of equatorial WWEs is more than 20 days in a month, monthly mean wind speed in central equatorial Pacific has high possibility of wind speed less than 3 m/s, thus has pronounced diurnal cycle of SST. The diurnal cycle of SST will rectify daily mean SST. Reduced mixing at the base of the mixed layer and suppression of entrainment due to the accumulated effect of diurnal cycle may lead to warmer SST in the following month. This study suggests the occurrence of more diurnal SST events may contribute to the increasing intensity of the CP El Niño events. 相似文献
16.
Maximum likelihood factor analysis (MLFA) is applied to investigate the variables of monthly Tropical Pacific sea surface temperatures (SST) from Niño 1+2, Niño 3, Niño 3.4, and Niño 4 and precipitation over New South Wales and Queensland of eastern Australia, Kalimantan Island of Indonesia, and California and Oregon of the west coast of the United States. The monthly data used were from 1950 to 1999. The November-February SST with time leads of 0, 1, 2, and 3 months to precipitation are considered for both El Niño warm phases and non El Niño seasons. Interpretations of the factor loadings are made to diagnose relationships between the SST and precipitation variables. For El Niño signals, the rotated FA loadings can efficiently group the SST and precipitation variables with interpretable physical meanings. When the time lag is 0 or 1 month, the November–February El Niño SST explains much of the drought signals over eastern Australia and Kalimantan. However, when the time lag is 2 or 3 months, the same SST cannot adequately explain the precipitation during January–May over the two regions. Communality results of five factors for precipitation indicate nearly 100% explanation of variances for Queensland and California, but the percentages are reduced to only about 30% for Oregon and Kalimantan. Factor scores clearly identify the strongest El Niño relevant to precipitation variations. Principal component factor analysis (PCFA) is also investigated, and its results are compared with MLFA. The comparison indicates that MLFA can better group SST data relevant to precipitation. The residuals of MLFA are always smaller than the PCFA. Thus, MLFA may become a useful tool for improving potential predictability of precipitation from SST predictors. 相似文献
17.
Precipitation changes over the Indo-Pacific during El Niño events are studied using an Atmospheric General Circulation Model forced with sea-surface temperature (SST) anomalies and changes in atmospheric CO 2 concentrations. Linear increases in the amplitude of the El Niño SST anomaly pattern trigger nonlinear changes in precipitation amounts, resulting in shifts in the location and orientation of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). In particular, the maximum precipitation anomaly along the ITCZ and SPCZ shifts eastwards, the ITCZ shifts south towards the equator, and the SPCZ becomes more zonal. Precipitation in the equatorial Pacific also increases nonlinearly. The effect of increasing CO 2 levels and warming SSTs is also investigated. Global warming generally enhances the tropical Pacific precipitation response to El Niño. The precipitation response to El Niño is found to be dominated by changes in the atmospheric mean circulation dynamics, whereas the response to global warming is a balance between dynamic and thermodynamic changes. While the dependence of projected climate change impacts on seasonal variability is well-established, this study reveals that the impact of global warming on Pacific precipitation also depends strongly on the magnitude of the El Niño event. The magnitude and structure of the precipitation changes are also sensitive to the spatial structure of the global warming SST pattern. 相似文献
18.
The El Niño Southern Oscillation (ENSO) affects weather around the globe, particularly in regions where developing countries typically lie. These countries are known to be most vulnerable to weather anomalies, and ENSO thereby has the potential to influence their economic growth. In this study, we investigate the effect of ENSO on economic growth in 69 developing countries, using annual data from 1961 to 2015. We find regime-dependent nonlinearity in the growth response to ENSO shocks. An El Niño event, equivalent to a 1 °C deviation in sea surface temperatures in the Niño3.4 region of the equatorial Pacific, results in one-to-two percent annual growth reduction during the El Niño regime, but the effect is absent during the La Niña regime. In addition, we find that the effect of El Niño is twice-as-large in the tropics relative to temperate areas, and particularly pronounced in Africa and Asia-Pacific. The findings of this study have two important implications. From the modeling standpoint, we find that the growth impacts of ENSO shocks are nonlinear, and vary across regions and climatic zones. From the policy-making standpoint, our findings suggest opportunities for short-term adjustments to climate shock management and international aid programs, depending on the existing state and the intermediate-term patterns of the ENSO cycle. 相似文献
19.
Through an oceanic mixed-layer heat budget analysis, the dominant processes contributing to the largest decay rate (− 0.37 °C/mon) in EP El Nino, the moderate delay rate (− 0.22 °C/mon) in CP El Nino and the smallest decay rate (0.13 °C/mon) in La Nina, are identified. The result shows that both dynamic (wind induced equatorial ocean waves and thermocline changes) and thermodynamic (net surface solar radiation and latent heat flux changes) processes contribute to a fast decay and thus phase transition in EP El Niño composite, whereas the thermodynamic process has less effect on the decay rate for both CP El Niño and La Niña due to the westward shift of sea surface temperature anomaly (SSTA) centers. Thus, the difference in surface wind stress forcing is critical in contributing to evolution asymmetry between CP El Niño and La Niña, while the difference in both the wind stress and heat flux anomalies contribute to evolution asymmetry between EP El Niño and La Niña. It is interesting to note that El Nino induced anomalous anticyclone over the western North Pacific is stronger and shifts more toward the east during EP El Niño than during CP El Niño, while compared to CP El Niño, the center of an anomalous cyclone during La Niña shifts further to the west. As a consequence, both EP and CP El Niño decay fast and transform into a La Niña episode in the subsequent year, whereas La Niña has a much slower decay rate and re-develops in the second year. 相似文献
|