首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The University of Oklahoma’s Advanced Regional Prediction System (ARPS) was used to examine the impacts of varying mean soil moisture and model resolution on the magnitude and frequency of precipitation events in the U.S. Central Plains and to determine whether modeled soil moisture and precipitation fields exhibit scale invariance using the statistical moments. It was found that high soil moisture resulted in greater precipitation amounts and a higher frequency of events, suggesting the occurrence of a positive soil moisture–precipitation feedback. The scaling analysis performed on cumulative precipitation determined that these fields did not exhibit signs of self-similarity and, therefore, statistical properties cannot be predicted at other resolutions. The scaling properties of soil moisture were highly variable in time which has important implications for the use of remotely sensed data, as scaling properties from 1 day cannot necessarily be applied to subsequent days.  相似文献   

3.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   

4.
We present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model’s skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models.  相似文献   

5.
Liu  Weiguang  Wang  Guiling  Yu  Miao  Chen  Haishan  Jiang  Yelin  Yang  Meijian  Shi  Ying 《Climate Dynamics》2020,55(9-10):2725-2742

The future vegetation–climate system over East Asia, as well as its dependence on Representative Concentration Pathways (RCPs), is investigated using a regional climate–vegetation model driven with boundary conditions from Flexible Global Ocean–Atmosphere–Land System Model: Grid-point Version 2. Over most of the region, due to the rising CO2 concentration and climate changes, the model projects greater vegetation density (leaf area index) and gradual shifts of vegetation type from bare ground to grass or from grass to trees; the projected spatial extent of the vegetation shift increases from RCP2.6 to RCP8.5. Abrupt shifts are projected under RCP8.5 over northeast China (with grass replacing boreal needleleaf evergreen trees due to heat stress) and India (with tropical deciduous trees replacing grass due to increased water availability). The impact of vegetation feedback on future precipitation is relatively weak, while its impact on temperature is more evident, especially during DJF over northeast China and India with differing mechanisms. In northeast China, the projected forest loss induces a cooling through increased albedo, and daytime high temperature (Tmax) is influenced more than nighttime low temperature (Tmin); in India, increased vegetation cover induces an evaporative cooling that outweighs the warming effect of an albedo decrease in DJF, leading to a weaker impact on Tmax than on Tmin. Based on a single model, the qualitative aspects of these results may hold while quantitative assessment will benefit from a follow-up regional model ensemble study driven by multiple general circulation models.

  相似文献   

6.
Observational data and climate model simulations and experiments are utilized to document an abrupt shift in Pacific sea surface temperatures (SSTs) and associated atmospheric conditions, which occurred in 1998–1999. Emphasis is placed on the March–May (MAM) season, as the motivation for the work is to extend a recent study that reported an abrupt decline in East African MAM rainfall at that time. An empirical orthogonal function analysis of MAM SSTs over the last century following the removal of the concurrent influence of the El Niño-Southern Oscillation and global warming trend by linear regression reveals a pattern of multidecadal variability in the Pacific similar to the Pacific Decadal Oscillation. Examination of MAM precipitation variations since 1940 indicates, among other findings, that recurrent drought events since 1999 in East Africa, central-southwest Asia, parts of eastern Australia and the southwestern US are all regional manifestations of a global scale multidecadal pattern. Associated shifts in the low-level wind field and upper-level stationary waves are discussed. Simulations using an atmospheric climate model forced with observed, global SSTs capture many of the salient precipitation and atmospheric circulation features associated with the observed shift. Further, when the model is forced only with observed SSTs from the tropical Pacific it also captures many of the observed atmospheric changes, including the abrupt shift in 1999. The results point to the fundamental role played by the tropical Pacific in driving the response to multidecadal variability of SSTs in the basin and provide important context for recent seasonal climate extremes in several regions of the globe.  相似文献   

7.
Processes acting at the interface between the land surface and the atmosphere have a strong impact on the European summer climate, particularly during extreme years. These processes are to a large extent associated with soil moisture (SM). This study investigates the role of soil moisture?Catmosphere coupling for the European summer climate over the period 1959?C2006 using simulations with a regional climate model. The focus of this study is set on temperature and precipitation extremes and trends. The analysis is based on simulations performed with the regional climate model CLM, driven with ECMWF reanalysis and operational analysis data. The set of experiments consists of a control simulation (CTL) with interactive SM, and sensitivity experiments with prescribed SM: a dry and a wet run to determine the impact of extreme values of SM, as well as experiments with lowpass-filtered SM from CTL to quantify the impact of the temporal variability of SM on different time scales. Soil moisture?Cclimate interactions are found to have significant effects on temperature extremes in the experiments, and impacts on precipitation extremes are also identified. Case studies of selected major summer heat waves reveal that the intraseasonal and interannual variability of SM account for 5?C30% and 10?C40% of the simulated heat wave anomaly, respectively. For extreme precipitation events on the other hand, only the wet-day frequency is impacted in the experiments with prescribed soil moisture. Simulated trends for the past decades, which appear consistent with projected changes for the 21st century, are identified to be at least partly linked to SM-atmosphere feedbacks.  相似文献   

8.
A regional coupled atmosphere–ocean model was developed to study the role of air–sea interactions in the simulation of the Indian summer monsoon. The coupled model includes the regional climate model (RegCM3) as atmospheric component and the regional ocean modeling system (ROMS) as oceanic component. The two-way coupled model system exchanges sea surface temperature (SST) from the ocean to the atmospheric model and surface wind stress and energy fluxes from the atmosphere to the ocean model. The coupled model is run for four years 1997, 1998, 2002 and 2003 and the results are compared with observations and atmosphere-only model runs employing Reynolds SSTs as lower boundary condition. It is found that the coupled model captures the main features of the Indian monsoon and simulates a substantially more realistic spatial and temporal distribution of monsoon rainfall compared to the uncoupled atmosphere-only model. The intraseasonal oscillations are also better simulated in the coupled model compared to the atmosphere-only model. These improvements are due to a better representation of the feedbacks between the SST and convection and highlight the importance of air–sea coupling in the simulation of the Indian monsoon.  相似文献   

9.
10.
The hydrology of coastal catchments is influenced by both sea level and climate. Hence, a comprehensive assessment of the impact of climate change on coastal catchments is a challenging task. In the present study, a coupled groundwater–surface water model is forced by dynamically downscaled results from a general circulation model. The effects on water quantity and quality of a relatively large lake used for water supply are analyzed. Although stream inflow to the lake is predicted to decrease during summer, the storage capacity of the lake is found to provide a sufficient buffer to support sustainable water abstraction in the future. On the other hand, seawater intrusion into the stream is found to be a significant threat to the water quality of the lake, possibly limiting its use for water supply and impacting the aquatic environment. Additionally, the results indicate that the nutrient load to the lake and adjacent coastal waters is likely to increase significantly, which will increase eutrophication and have negative effects on the surface water ecology. The hydrological impact assessment is based on only one climate change projection; nevertheless, the range of changes generated by other climate models indicates that the predicted results are a plausible realization of climate change impacts. The problems identified here are expected to be relevant for many coastal regimes, where the hydrology is determined by the interaction between saline and fresh groundwater and surface water systems.  相似文献   

11.
Predictability of the subtropical dipole modes is assessed using the SINTEX-F coupled model. Despite the known difficulty in predicting subtropical climate due to large internal variability of the atmosphere and weak ocean–atmosphere coupling, it is shown for the first time that the coupled model can successfully predict the South Atlantic Subtropical Dipole (SASD) 1 season ahead, and the prediction skill is better than the persistence in all the 1–12 month lead hindcast experiments. There is a prediction barrier in austral winter due to the seasonal phase locking of the SASD to austral summer. The prediction skill is lower for the Indian Ocean Subtropical Dipole (IOSD) than for the SASD, and only slightly better than the persistence till 6-month lead because of the low predictability of the sea surface temperature anomaly in its southwestern pole. However, for some strong IOSD events in the last three decades, the model can predict them 1 season ahead. The co-occurrence of the negative SASD and IOSD in 1997/1998 austral summer can be predicted from July 1st of 1997. This is because the negative sea level pressure anomalies over the South Atlantic and the southern Indian Ocean in September–October (November–December) that trigger the occurrence of the negative SASD and IOSD are related to the well predicted tropical Indian Ocean Dipole (El Niño/Southern Oscillation). Owing to the overall good performances of the SINTEX-F model in predicting the SASD, some strong IOSD, and El Niño/Southern Oscillation, the prediction skill of the southern African summer precipitation is high in the SINTEX-F model.  相似文献   

12.
Within the CIRCE project “Climate change and Impact Research: the Mediterranean Environment”, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.  相似文献   

13.
Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean?Catmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air?Csea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20?C90?day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10° further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden?CJulian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further, Hovm?ller diagrams reveal that whereas a significant dynamic intraseasonal signal enters the model domain from the west, the strong deep convection mostly arises within the domain. Taken together, the regional and linear model results suggest that in this region remote forcing and local convection?Ccirculation feedbacks are both important to the intraseasonal variability, but ocean?Catmosphere coupling has only a small effect. Possible mechanisms of remote forcing are discussed.  相似文献   

14.
This study presents the characterization of regional means and variability of temperature and precipitation in 1961–2000 for Thailand using regional climate model RegCM3. Two fine-resolution (20 km) simulations forced by ERA-40 reanalysis data were performed, with the default land covers and with a land-cover modification strategy suggested by a previous work. The strategy was shown to substantially alleviate the problem of systematic underestimation of temperature given by the default simulation, for most part of Thailand in both dry and wet seasons. The degree of bias in precipitation tends to vary differently in every sub-region and season considered. The patterns of seasonal variation of both climatic variables are acceptably reproduced. Simulated 850-hPa winds have general agreement with those of ERA-40, but wind speed is overestimated over the Gulf of Thailand during the dry months, potentially bringing excessive moisture to and causing more rain than actual in the south. Long-term trends in temperature are reasonably predicted by the model while those in observed and simulated precipitations for upper Thailand are in the opposite directions. Apart from the conventional methods used in characterization, spectral decomposition using Kolmogorov–Zurbenko filters was applied to inspect the model’s capability of accounting for variability (here, in terms of variance) in both climatic variables on three temporal scales (short term, seasonal, and long term). The model was found to closely estimate the total variances in the original time series and fairly predict the relative variance contributions on all temporal scales. The latter finding is in line with the results from an additional spectral coherence analysis. Overall, the model was shown to be acceptably adequate for use in support of further climate studies for Thailand, and its evident strength is the capability of reproducing seasonal characteristics and, to a lesser degree, trends.  相似文献   

15.
 The thirty year simulation of the coupled global atmosphere-tropical Pacific Ocean general circulation model of the Laboratoire de Métérologie Dynamique and the Laboratoire d’Océanographie Dynamique et de Climatologie presented in Part I is further investigated in order to understand the mechanisms of interannual variability. The model does simulate interannual events with ENSO characteristics; the dominant periodicity is quasi-biennial, though strong events are separated by four year intervals. The mechanism that is responsible for seasonal oscillations, identified in Part I, is also active in interannual variability with the difference that now the Western Pacific is dynamically involved. A warm interannual phase is associated with an equatorward shift of the ITCZ in the Western and Central Pacific. The coupling between the ITCZ and the ocean circulation is then responsible for the cooling of the equatorial subsurface by the draining mechanism. Cold subsurface temperature anomalies then propagate eastward along the mean equatorial thermocline. Upon reaching the Eastern Pacific where the mean thermocline is shallow, cold subsurface anomalies affect surface temperatures and reverse the phase of the oscillation. The preferred season for efficient eastward propagation of thermocline depth temperature anomalies is boreal autumn, when draining of equatorial waters towards higher latitudes is weaker than in spring by a factor of six. In that way, the annual cycle acts as a dam that synchronizes lower frequency oscillations. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

16.
Three different resolution (50, 12, and 1.5 km) regional climate model simulations are compared in terms of their ability to simulate moderate and high daily precipitation events over the southern United Kingdom. The convection-permitting 1.5-km simulation is carried out without convective parametrisation. As in previous studies, increasing resolution (especially from 50 to 12 km) is found to improve the representation of orographic precipitation. The 50-km simulation underestimates mean precipitation over the mountainous region of Wales, and event intensity tends to be too weak; this bias is reduced in both the 12- and 1.5-km simulations for both summer and winter. In south–east England lowlands where summer extremes are mostly convective, increasing resolution does not necessary lead to an improvement in the simulation. For the 12-km simulation, simulated daily extreme events are overly intense. Even though the average intensity of summer daily extremes is improved in the 1.5-km simulation, this simulation has a poorer mean bias with too many events exceeding high thresholds. Spatial density and clustering of summer extremes in south–east England are poorly simulated in both the 12- and 1.5-km simulations. In general, we have not found any clear evidence to show that the 1.5-km simulation is superior to the 12-km simulation, or vice versa at the daily level.  相似文献   

17.
We compare two 28-year simulations performed with two versions of the Global Environmental Multiscale model run in variable-resolution mode. The two versions differ only by small differences in their radiation scheme. The most significant modification introduced is a reduction in the ice effective radius, which is observed to increase absorption of upwelling infrared radiation and increase temperature in the upper troposphere. The resulting change in vertical lapse rate is then observed to drive a resolution-dependent response of convection, which in turn modifies the zonal circulation and induces significant changes in simulated Atlantic tropical cyclone activity. The resulting change in vertical lapse rate and its implication in the context of anthropogenic climate change are discussed.  相似文献   

18.
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.  相似文献   

19.
The dynamics of a low-order coupled wind-driven ocean–atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157–1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585–1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber (“synoptic” scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov–Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al. in J Atmos Sci 66:766–778, 2009).  相似文献   

20.
The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean–atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL_CM4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m3/s between 38° and 54°N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m3/s, relative to the classical LGM simulation. Consequentially, northward ocean heat transport is weaker, and sea ice more extensive, in better agreement with existing proxy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号