首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change caused by anthropogenic activities has generated a variety of research focusing on investigating the past climate, predicting the future climate and quantifying the change in climate extreme events by using different climate models. Climate extreme events are valuable to evaluate the potential impact of climate change on human activities, agriculture and economy and are also useful to monitor the climate change on global scale. Here, a Regional Climate Model (RCM) simulation is used to study the future variations in the temperature extreme indices, particularly change in frequency of warm and cold spells duration over Pakistan. The analyses are done on the basis of simulating two 30 years simulations with the Hadley Center’s RCM PRECIS, at a horizontal resolution of 50 km. Simulation for the period 1961–1990 represents the recent climate and simulation for the period 2071–2100 represents the future climate. These simulations are driven by lateral boundary conditions from HadAM3P GCM of Hadley centre UK. For the validation of model, observed mean, maximum and minimum temperatures for the period 1961–1990 at all the available stations in Pakistan are first averaged and are then compared with the PRECIS averaged grid-box data. Also the observed monthly gridded data set of Climate Research Unit (UK) data is used to validate the model. Temperature indices in the base period as well as in future are then calculated and the corresponding change is observed. Percentile based spatial change of temperature shows that in summer, increase in daily minimum temperature is more as compared to the increase of daily maximum temperature whereas in winter, the change in maximum temperature is high. The occurrence of annual cold spells shows significantly decreasing trend while for warm spells there is slight increasing trend over Pakistan.  相似文献   

2.
The sensitivity of the Atlantic circulation and watermasses to biases in the convergence of moisture into the basin is examined in this study using two different general circulation models. For a persistent positive moisture flux into the tropical Atlantic, the average salinity and temperature in the basin is reduced, mainly below mid-depths and in high latitudes. A transient reduction in the Atlantic overturning strength occurs in this case, with a recovery timescale of 1–2 centuries. In contrast, a similar amount of freshwater directed into the Subpolar North Atlantic results in a persistent reduction in overturning and an increase in basin heat and salt content. In the unperturbed pre-industrial simulations, the Atlantic is unambiguously warmer and saltier than historical observations below mid-depths and in the Nordic Seas. The models’ tropical freshwater flux sensitivities project strongly onto the spatial pattern of this bias, suggesting a common atmospheric deficiency. The integrated Atlantic plus Arctic surface freshwater flux in these models is between ?0.5 and ?0.6 Sv, compared with an observational estimate of ?0.28 Sv. Our results suggest that shortcomings in the models’ ability to reproduce realistic bulk watermass properties are due to an overestimation of the inter-basin moisture export from the tropical Atlantic.  相似文献   

3.
This paper is dedicated to the analysis of winter cold spells over Western Europe in the simulations of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). Both model biases and responses in a warming climate are discussed using historical simulations and the 8.5 W/m2 Representative Concentration Pathway (RCP8.5) scenario, respectively on the 1979–2008 and 2070–2099 periods. A percentile-based index (10th percentile of daily minimum temperature, Q10) with duration and spatial extent criteria is used to define cold spells. Related diagnostics (intensity, duration, extent, and severity as a combination of the former three statistics) of 13 models are compared to observations and suggest that models biases on severity are mainly due to the intensity parameter rather than to duration and extent. Some hypotheses are proposed to explain these biases, that involve large-scale dynamics and/or radiative fluxes related to clouds. Evolution of cold spells characteristics by the end of the century is then discussed by comparing RCP8.5 and historical simulations. In line with the projected rise of mean temperature, “present-climate” cold spells (computed with the 1979–2008 10th percentile, Q10P) are projected to be much less frequent and, except in one model, less severe. When cold spells are defined from the future 10th percentile threshold (“future-climate” cold spells, Q10F), all models simulate a decrease of their intensity linearly related to the seasonal mean warming. Some insights are given to explain the inter-model diversity in the magnitude of the cold spells response. In particular, the snow-albedo feedback is suggested to play an important role, while for some models changes in large-scale dynamics are also not negligible.  相似文献   

4.
A comparison of climate feedbacks in general circulation models   总被引:3,自引:2,他引:3  
R. Colman 《Climate Dynamics》2003,20(7-8):865-873
  相似文献   

5.
Heat waves have attracted increasing attention in recent years due to their frequent occurrence. The present study investigates the heat wave intensity and duration in China using daily maximum temperature from 753 weather stations from 1960 to 2010. In addition, its relationships with soil moisture local forcing on the ten-day period and monthly scales in spring and summer are analyzed using soil moisture data from weather stations and ERA40 reanalysis data. And finally, a mechanistic analysis is carried out using CAM5.1 (Community Atmosphere Model, version 5.1) coupled with CLM2 (Community Land Model, version 2). It is found that the heat wave frequency and duration show a sandwich distribution across China, with high occurrence rates in Southeast China and Northwest China, where the maximum frequency and duration exceeded 2.1 times and 9 days per year, respectively. The increasing trends in both duration and intensity occurred to the north of 35°N. The relationships between heat wave frequency in northern China in July (having peak distribution) and soil moisture in the earlier stage (from March to June) and corresponding period (July) are further analyzed, revealing a strong negative correlation in March, June and July, and thus showing that soil moisture in spring and early summer could be an important contributor to heat waves in July via positive subtropical high anomalies. However, the time scales of influence were relatively short in the semi-humid and humid regions, and longer in the arid region. The contribution in the corresponding period took place via positive subtropical high anomalies and positive surface skin temperature and sensible heat flux anomalies.  相似文献   

6.
The ability of a large ensemble of regional climate models to accurately simulate heat waves at the regional scale of Europe was evaluated. Within the EURO-CORDEX project, several state-of-the art models, including non-hydrostatic meso-scale models, were run for an extended time period (20 years) at high resolution (12 km), over a large domain allowing for the first time the simultaneous representation of atmospheric phenomena over a large range of spatial scales. Eight models were run in this configuration, and thirteen models were run at a classical resolution of 50 km. The models were driven with the same boundary conditions, the ERA-Interim re-analysis, and except for one simulation, no observations were assimilated in the inner domain. Results, which are compared with daily temperature and precipitation observations (ECA&D and E-OBS data sets) show that, even forced by the same re-analysis, the ensemble exhibits a large spread. A preliminary analysis of the sources of spread, using in particular simulations of the same model with different parameterizations, shows that the simulation of hot temperature is primarily sensitive to the convection and the microphysics schemes, which affect incoming energy and the Bowen ratio. Further, most models exhibit an overestimation of summertime temperature extremes in Mediterranean regions and an underestimation over Scandinavia. Even after bias removal, the simulated heat wave events were found to be too persistent, but a higher resolution reduced this deficiency. The amplitude of events as well as the variability beyond the 90th percentile threshold were found to be too strong in almost all simulations and increasing resolution did not generally improve this deficiency. Resolution increase was also shown to induce large-scale 90th percentile warming or cooling for some models, with beneficial or detrimental effects on the overall biases. Even though full causality cannot be established on the basis of this evaluation work, the drivers of such regional differences were shown to be linked to changes in precipitation due to resolution changes, affecting the energy partitioning. Finally, the inter-annual sequence of hot summers over central/southern Europe was found to be fairly well simulated in most experiments despite an overestimation of the number of hot days and of the variability. The accurate simulation of inter-annual variability for a few models is independent of the model bias. This indicates that internal variability of high summer temperatures should not play a major role in controlling inter-annual variability. Despite some improvements, especially along coastlines, the analyses conducted here did not allow us to generally conclude that a higher resolution is clearly beneficial for a correct representation of heat waves by regional climate models. Even though local-scale feedbacks should be better represented at high resolution, combinations of parameterizations have to be improved or adapted accordingly.  相似文献   

7.
8.
9.
In order to investigate whether climate models of different complexity have the potential to simulate natural atmospheric circulation regimes, 1000-year-long integrations with constant external forcing have been analysed. Significant non-Gaussian uni-, bi-, and trimodal probability density functions have been found in 100-year segments.  相似文献   

10.
 The predictability of atmospheric responses to global sea surface temperature (SST) anomalies is evaluated using ensemble simulations of two general circulation models (GCMs): the GENESIS version 1.5 (GEN) and the ECMWF cycle 36 (ECM). The integrations incorporate observed SST variations but start from different initial land and atmospheric states. Five GEN 1980–1992 and six ECM 1980–1988 realizations are compared with observations to distinguish predictable SST forced climate signals from internal variability. To facilitate the study, correlation analysis and significance evaluation techniques are developed on the basis of time series permutations. It is found that the annual mean global area with realistic signals is variable dependent and ranges from 3 to 20% in GEN and 6 to 28% in ECM. More than 95% of these signal areas occur between 35 °S–35 °N. Due to the existence of model biases, robust responses, which are independent of initial condition, are identified over broader areas. Both GCMs demonstrate that the sensitivity to initial conditions decreases and the predictability of SST forced responses increases, in order, from 850 hPa zonal wind, outgoing longwave radiation, 200 hPa zonal wind, sea-level pressure to 500 hPa height. The predictable signals are concentrated in the tropical and subtropical Pacific Ocean and are identified with typical El Ni?o/ Southern Oscillation phenomena that occur in response to SST and diabatic heating anomalies over the equatorial central Pacific. ECM is less sensitive to initial conditions and better predicts SST forced climate changes. This results from (1) a more realistic basic climatology, especially of the upper-level wind circulation, that produces more realistic interactions between the mean flow, stationary waves and tropical forcing; (2) a more vigorous hydrologic cycle that amplifies the tropical forcing signals, which can exceed internal variability and be more efficiently transported from the forcing region. Differences between the models and observations are identified. For GEN during El Ni?o, the convection does not carry energy to a sufficiently high altitude, while the spread of the tropospheric warming along the equator is slower and the anomaly magnitude smaller than observed. This impacts model ability to simulate realistic responses over Eurasia and the Indian Ocean. Similar biases exist in the ECM responses. In addition, the relationships between upper and lower tropospheric wind responses to SST forcing are not well reproduced by either model. The identification of these model biases leads to the conclusion that improvements in convective heat and momentum transport parametrizations and basic climate simulations could substantially increase predictive skill. Received: 25 April 1996 / Accepted: 9 December 1996  相似文献   

11.
东北冷涡低频活动特征及背景环流   总被引:11,自引:0,他引:11  
研究了1965-2007年夏季(5-8月)东北冷涡活动的时空分布特征和同期背景环流型.东北冷涡活动区域5月主要是45°N以北,6月向南扩展到40°N以南,然后逐月向北收缩.夏季,随着东亚急流的逐渐减弱和北进,东北冷涡天数逐渐增加,6月6日前后达到峰值,但入梅后冷涡频数有所减少.随着梅雨期结束,冷涡频数进一步降低.强冷涡事件集中于入梅之前,中等和弱强度的事件主要发生在梅雨期和出梅之后.在入梅之前和出梅之后,东北冷涡频数呈现准2 a振荡特征.夏季东北冷涡频数在1965-2007年具有增加趋势,其中,梅雨期的增加趋势尤为明显.东北冷涡的形态根据其上游高压脊的位置可分为4种:叶尼塞河型、贝加尔湖型、乌拉尔-雅库斯克型和鄂霍次克海-北冰洋型.西太平洋遥相关(WP)型为东北冷涡活动的同期背景环流型,东北冷涡在其负位相易于生成.此外,5-6月东北冷涡活动与太平洋/北美(PNA)型、8月东北冷涡活动与北大西洋涛动(NAO)密切联系.  相似文献   

12.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

13.
The study deals with changes in large-scale atmospheric circulation (represented by circulation types) and associated surface air temperatures as projected in an ensemble of regional climate models (RCMs) from the ENSEMBLES project. We examine changes of circulation type frequencies and means of daily maximum and minimum temperatures within circulation types in individual seasons for two time slices of transient runs under the SRES A1B scenario (2021–2050 and 2071–2100) with respect to the control period (1961–1990). To study the influence of driving data, simulations of the driving general circulation models (GCMs) also are evaluated. We find that all models project changes of atmospheric circulation that are statistically significant for both future time slices. The models tend to project strengthening of the westerly circulation in winter and its weakening in summer. We show that increases of daily maximum and minimum temperatures in all seasons differ for individual circulation types. There are, however, only few features of the projected changes in the future circulation–temperature links that are common among the models, in particular relatively smaller warming for westerly types. Only in winter, projected changes in circulation types tend to contribute to the projected overall warming. This effect is negligible and mostly opposite in the other seasons. We also detect a strong influence of driving data on RCMs’ simulation of atmospheric circulation and temperature changes.  相似文献   

14.
The wind-evaporation-convection feedback in the tropics is demonstrated to strongly affect the mean state of surface climate in atmospheric general circulation models. The feedback is shown to be very effective in channeling perturbations from one component of the climate system to other components, e.g., from evaporation to surface wind and from atmospheric convective activity to evaporation. It also provides an effective channel to pass on atmospheric perturbations in the middle and upper troposphere to the surface. As an illustration, it is shown that surface evaporation over tropical oceans is connected with cloud absorption of shortwave radiation through this feedback. Insufficient shortwave cloud absorption, causing excessive shortwave radiation at the surface as is common in most of the climate models, leads to excessive evaporation. Quantitatively, sensitivity of evaporation to short-wave cloud absorption, when averaged over the whole tropics, can be described by an approximate balance of variations in atmospheric radiative cooling and latent heating. This balance is achieved by the impact of radiation on convection, and then on the surface wind and evaporation. This mechanism calls for the need to include atmospheric processes far beyond the surface for improvements of the quality of surface climate simulation.  相似文献   

15.
16.
It is desirable to design proxy investigations that target regions where properties reconstructed from calibrated parameters potentially carry high-fidelity information concerning changes in large-scale climate systems. Numerical climate models can play an important role in this task, producing simulations that can be analyzed to produce spatial “fingerprints” of the expected response of various properties under a variety of different scenarios. We will introduce a new method of fingerprinting the Atlantic meridional overturning circulation (AMOC) that not only provides information concerning the sensitivity of the response at a given location to changes in the large-scale system, but also quantifies the linearity, monotonicity and symmetry of the response. In this way, locations that show high sensitivities to changes in the AMOC, but that exhibit, for example, strongly nonlinear behavior can be avoided during proxy investigations. To demonstrate the proposed approach we will use the example of the response of seawater temperatures to changes in the strength of the AMOC. We present results from an earth-system climate model which has been perturbed with an idealized freshwater forcing scenario in order to reduce the strength of the AMOC in a systematic manner. The seawater temperature anomalies that result from the freshwater forcing are quantified in terms of their sensitivity to the AMOC strength in addition to the linearity and monotonicity of their response. A first-order reversal curve (FORC) approach is employed to investigate and quantify the irreversibility of the temperature response to a slowing and recovering AMOC. Thus, FORCs allow the identification of areas that are unsuitable for proxy reconstructions because their temperature versus AMOC relationship lacks symmetry.  相似文献   

17.
This study evaluates the convectively coupled equatorial waves in ten coupled general circulation models (GCMs) in the twentieth century experiment from the Coupled Model Intercomparison Project phase 3 of the World Climate Research Programme. The antisymmetric bands in all GCMs are weaker than in observations, and the mixed Rossby-gravity (MRG) wave seems to be a mixture of the equatorial Rossby (ER) and tropical depression-type (TD-type) waves rather than a mixture of the ER and inertiogravity waves found in observations. The simulated TD-type wave is more organized than in observations with a quasilinear wavenumber–frequency relationship. In most GCMs, the two observed activity centers of the MRG and TD-type waves over the southern Indian Ocean and the southwestern Pacific cannot be separated; only one wave activity center is found over the Maritime Continent. The observed northwestward propagation of the TD-type wave over the western North Pacific is also not well simulated in the GCMs. The simulated active season of the MRG and TD-type waves over the northern hemisphere during the boreal summer and fall is much shorter than in observations. The models from CCSR utilizing the Pan and Randall scheme with the convection suppression simulate the realistic Kelvin wave activity with the maximum activity near the equator, while the wave activities filtered for the Kelvin wave in the other GCMs are similar to the extratropical Rossby wave with the maximum activity at higher latitudes. Likewise, only these two models produce a realistic seasonal cycle of the Kelvin wave activity.  相似文献   

18.
The generation and dissipation of SST anomalies is mediated by the covariability of SST and surface heat fluxes. The connection between the variability of heat flux (including its radiative and turbulent components) and that of SST is investigated using the NCEP-NCAR and ERA-40 reanalyses and the CMIP3 multi-model collection of climate simulations. The covariance patterns of SST and heat flux are broadly similar in the two reanalyses. The upward heat fluxes are positively correlated with the SST anomalies in the tropics, the northern Pacific mid-latitudes, and over the Gulf Stream, and negatively correlated in the northern subtropics and the SPCZ region. Common covariance features are seen in all climate models in the tropics and the subtropics, while covariances differ considerably among models at northern mid-latitudes, where weak values of the ensemble mean are seen. Lagged covariances are broadly similar in the two reanalyses and among the models, implying that heat flux feedback is also similar. The heat flux feedback parameter is determined from the lagged cross-covariances together with the auto-covariance of SST. Feedback is generally negative and is dominated by the turbulent component. The strongest feedback is found at mid-latitudes in both hemispheres, with the largest values occurring in the western and central portions of the oceans with extensions to higher latitudes. The latter are also areas with large inter-model differences. The heat flux feedback strengthens in winter and fall and weakens in spring and summer. The magnitudes of the annual and seasonal feedback parameters are slightly weaker in most models compared to the reanalysis-based estimates. The mean model feedback parameter has the best pattern correlation and the smallest mean square difference compared to the reanalysis-based values, although spatial variances are weak. Model resolution shows no relationship with the heat flux feedback parameters obtained from model results. The SST-heat flux covariance is decomposed into components associated with surface heat flux feedback and atmospheric forcing processes. Heat flux feedback dominates over the atmospheric forcing and heat flux damps SST anomalies on average at northern Pacific mid-latitudes and southern Atlantic mid-latitudes; while the reverse occurs in the SPCZ and northern Atlantic mid-latitudes.  相似文献   

19.
利用阿勒泰基准气候站日最低气温资料,资料长度从1954年到2016年的春季(每年2月26日至5月31日,共计63年),以日最低气温及其降温幅度为指标,整理出阿勒泰市63年寒潮过程数据库,分析阿勒泰市近63a来寒潮过程的频数以及强度相关6个指标的气候特征,结果表明:(1)1954~2016年春季(3~5月)阿勒泰市共发生寒潮天气过程226次,平均每年发生3.6次。3月平均每年出现1.8次, 4月1.1次,5月0.7次。共有17a为寒潮发生异常偏少年份,16a为异常偏多年份。3月上旬和3月中旬为寒潮天气过程发生最多的时段。(2)春季寒潮频数以每10a/0.1次的速率在递减。月际尺度上,3月和5月发生寒潮天气过程递减,4月递增。年代际1950年代最多,2010-2016年最少。(3)春季寒潮天气过程持续日数在1~7d,其中持续2d的寒潮过程最多,占春季寒潮过程的49%。持续时间在1~3d的寒潮天气过程占92%。(4)春季寒潮降温过程平均降温幅度为-12.7℃,降温幅度平均值最大在3月。最大24h、48h和72h降温幅度平均值分别为-8.9℃、-12.5℃和-14.3℃。(5)春季寒潮降温过程最低气温平均值为-11.8℃。寒潮降温过程最低气温平均距平值为-7.6℃。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号