首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use an early twentieth century (1908?C1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932?C1939 (the ??Dust Bowl??) and 1948?C1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October?CMarch) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April?CSeptember) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948?C1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932?C1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et?al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.  相似文献   

2.
Three new 159-year long reconstructions of spring, summer, and growing season precipitation totals were developed for northeastern Kansas and northwestern Missouri from five station clusters (Lawrence, Leavenworth, and Manhattan, Kansas; Miami and Oregon, Missouri). Nonstandard observation practices are inherent in the early meteorological data, which can induce an undercount in precipitation measurements, particularly during the cool season. Threshold analyses of these five station clusters indicated undercount can be lessened for daily precipitation totals of 0.50 in. and greater during the warm season (“half-inch threshold”). Therefore, “adjusted reconstructions” of total precipitation for the spring (AMJ), summer (JA), and growing season (AMJJA) were derived using the “half-inch threshold” totals and an estimate of the missing amount between 0.00 and 0.50 in. based on an average of the modern observations at each station (or the nearest available station). The new precipitation reconstructions suggest that the most severe spring drought may have occurred during the mid-19th century, although the potential for undercount is likely highest during the spring season. The most severe summer precipitation deficit is estimated during the 1930s Dust Bowl drought, followed by the summer drought of the 1910s. When precipitation is totaled for the entire growing season, the mid-19th century and Dust Bowl droughts were of approximately equal magnitude and duration in this reconstruction. However, the integration of precipitation and temperature into seasonal measures of effective moisture, using a new 19th century temperature reconstruction for northeastern Kansas, indicates that the 1930s growing season moisture deficit was the most severe and sustained since 1855, highlighting the extraordinarily high temperatures recorded during the 1930s Dust Bowl drought.  相似文献   

3.
用1958~2000年NCEP/NCAR再分析资料、中国160站降水量及1958~1998年月平均海温资料分析了中国夏季相邻月份降水异常型的相关特征,及其与大气热源的关系和相关物理过程。结果表明,7月长江流域的降水异常与8月长江和黄河之间地区的降水异常有很好的同号性。7、8月长江流域及附近地区持续性偏旱(涝)与太平洋洋盆尺度的大气热源异常有关,并与前期5、6月热带中、东太平洋大范围的热源异常、青藏高原热源异常也有密切的联系,即当5、 6月赤道东太平洋的大气热源正异常,而赤道中太平洋北侧的热源负异常,则中国7月长江中下游偏涝,8月长江中上游与江淮流域和内蒙古东部偏涝,华南偏旱;反之亦然。前期热带中、东太平洋上空的热源异常中心和与之联系的异常垂直运动中心的西扩和西移,以及青藏高原东部的热源异常中心是影响我国7、8月持续偏旱(涝)的重要环流异常特征。另外,南海-西太平洋海温在前期也已经具有我国夏季长江流域发生旱涝对应的同期海温异常分布型的特征。  相似文献   

4.
基于CRU逐月降水和NCEP/NCAR再分析等资料,利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法,分析1948—2016年中国中部地区夏季降水变化的多时间尺度特征及其对应的环流、海温异常,进而解释不同时期影响干旱发生的背景场有何不同。结果表明,中部地区夏季降水以年际变化为主,周期长度为3.8 a和6.9 a,年代际和多年代际变化的方差贡献不足20%。然而,各时间尺度降水变化对不同时期干旱事件的贡献存在较大差异,1960s、1970s,降水年际变化偏弱,相反地,多年代际变化正处于负位相的极小值期;1980s、1990s,多年代际变化位相转正;2000s初,年际变化明显增强。此外,通过分析不同时间尺度降水变化对应的环流、海温背景场,发现热带印度洋海温异常及其引起的西北太平洋副热带高压的变化、大西洋北部海温异常激发的纬向波列以及贝加尔湖地区的阻塞活动、1970s末PDO位相转变伴随的东亚夏季风突变是分别解释降水年际、年代际和多年代际变化的主要原因,进而揭示影响中部地区夏季干旱发生的关键因子及其相对重要性。  相似文献   

5.
山东夏季降水的气候特征及其成因   总被引:2,自引:0,他引:2  
用GMS TBB和ECMWF的格点风资料,采用带通滤波、EOF分解和合成分析方法,对湖北省洪涝年出现“二度梅”年(1980、1998年)和无“二度梅”年(1991、1999年)的南海和青藏高原TBB的低频振荡特征进行了分析研究。结果表明:有(无)“二度梅”年,南海低频TBB在6~7月的振荡位相是相反的;在7月下旬~8月上旬,南海低频TBB为高(低)值位相,青藏高原低频TBB为低(高)值位相。南亚地区低频TBB场EOF1的空间分布形式呈“南负北正”(南正北负)。  相似文献   

6.
A method for simulating future climate on regional space scales is developed and applied to northern Africa. Simulation with a regional model allows for the horizontal resolution needed to resolve the region’s strong meridional gradients and the optimization of parameterizations and land-surface model. The control simulation is constrained by reanalysis data, and realistically represents the present day climate. Atmosphere–ocean general circulation model (AOGCM) output provides SST and lateral boundary condition anomalies for 2081–2100 under a business-as-usual emissions scenario, and the atmospheric CO2 concentration is increased to 757 ppmv. A nine-member ensemble of future climate projections is generated by using output from nine AOGCMs. The consistency of precipitation projections for the end of the twenty-first century is much greater for the regional model ensemble than among the AOGCMs. More than 77% of ensemble members produce the same sign rainfall anomaly over much of northern Africa. For West Africa, the regional model projects wetter conditions in spring, but a mid-summer drought develops during June and July, and the heat stoke risk increases across the Sahel. Wetter conditions resume in late summer, and the likelihood of flooding increases. The regional model generally projects wetter conditions over eastern Central Africa in June and drying during August through September. Severe drought impacts parts of East Africa in late summer. Conditions become wetter in October, but the enhanced rainfall does not compensate for the summertime deficit. The risk of heat stroke increases over this region, although the threat is not projected to be as great as in the Sahel.  相似文献   

7.
基于1979—2014年ERA-Interim逐月风场和水汽通量资料及GPCP逐月降水率资料,采用相关分析及合成分析等方法研究了夏季南海低空越赤道气流的变化特征及其与亚澳季风区降水异常的联系。结果表明:1)夏季南海低空越赤道气流强度的年际变化特征明显,具有3~4 a的周期。2)夏季南海低空越赤道气流强度变化与热带东印度洋和海洋性大陆区域降水异常具有显著的负相关关系、与热带西太平洋降水异常存在明显的正相关关系、与我国中部地区降水异常存在较好的负相关关系。3)当夏季南海低空越赤道气流强度偏强时,850 hPa上自阿拉伯海向东一直延伸到热带西太平洋为西风异常,这种环流形势有利于热带西太平洋出现水汽辐合,使得该区域降水出现明显偏多,同时热带东印度洋低层为东风异常,受其影响,热带东印度洋和海洋性大陆区域出现水汽辐散,使得该区域降水偏少;此外,在我国东南沿海为一个气旋式风场异常,不利于来自热带海洋的水汽输送到达我国中部地区,使得该地区降水偏少;反之亦然。4)当夏季南海低空越赤道气流偏强时,东亚地区局地Hadley环流表现为异常偏弱,低空偏南越赤道气流异常在20°N附近与来自北半球的冷空气交汇上升,赤道附近及30~40°N地区出现异常下沉运动,使得热带海洋性大陆区域和我国中部地区降水减少;反之亦然。  相似文献   

8.
王朋岭  周兵  韩荣青  孙冷  王遵娅  司东  孙丞虎 《气象》2012,38(4):472-479
本文基于实时和历史观测资料,利用气候统计和气候机理诊断方法,对2011年气候异常及成因进行总结分析。结果表明,全球海洋外源强迫和大气内部动力过程共同作用下的大气环流系统组合异常,是造成2011年中国大部地区降水异常偏少,温度明显偏高,呈现暖干型气候特征的主要原因。具体表现为,拉尼娜事件在2011年夏季短暂中断后,9月再次进入拉尼娜状态;西太平洋副热带高压在5月之前异常偏弱、偏东,致使长江中下游出现严重春旱,之后副热带高压有所加强,尤其在6月异常偏强,使长江中下游地区梅雨量偏多、旱涝急转;秋季副热带高压脊线偏北、中高纬度冷空气活动阶段性活跃,致使华西、黄淮地区秋雨异常偏多;热带印度洋海温演变经历负偶极型海温模态后,夏季转为全区一致型暖海温;2010/2011年东亚冬季风偏强,2011年南海夏季风爆发偏早、结束偏晚,东亚夏季风正常偏弱;西北太平洋和南海热带气旋生成数量处于偏少的年代际时段,2011年热带气旋生成数量偏少。  相似文献   

9.
本文利用观测和再分析资料,通过奇异值分解(Singular Value Decomposition, SVD)分析,发现北极涛动(Arctic Oscillation, AO)是显著影响中国夏季降水年际异常的前冬中高纬大气环流变异的主模态。AO在冬季发展成熟,在春季衰亡,在夏季发生位相反转。AO会导致华北、东北、长江中下游和华南夏季降水异常呈现三极型分布。伴随正位相的AO,在黄海至日本海上空的异常低压伴随的东北风异常引起华北和东北水汽通量异常辐散及降水减少,而西北太平洋的异常高压不仅增强其北侧的西南风水汽输送,和北部异常低压共同作用导致长江中下游水汽通量异常辐合及降水增加,而且使得华南水汽通量异常辐散,降水减少。因此,本文发现的前冬AO模态与我国夏季三极型异常降水分布的关系可为我国夏季旱涝预测提供一个重要的中高纬前期因子。  相似文献   

10.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

11.
A gridded monthly precipitable water (PW) data for 1979?C2007 from the NCEP/NCAR reanalysis are used to investigate summertime interannual PW variability over Europe and its relation to the key climate parameters in the region. During summer season the first EOF mode of PW, explaining 27?C41% of its total variance, demonstrates significant month-to-month changes in its structure, thus, implying its essential non-stationarity. The second EOF mode of PW is also non-stationary during the summer season. In contrast to precipitation, both leading modes of PW are not associated with the North Atlantic Oscillation (NAO), as well as with other regional teleconnections, suggesting relatively minor role of the atmospheric dynamics in atmospheric moisture variability over Europe during summer season. Analysis of links between leading EOF modes of regional PW and air temperature (AT) has revealed a strong link between PW and AT over Europe, persisting during entire summer season. Locally, these links imply that positive (negative) AT anomalies result in enhanced (decreased) PW over particular region. Revealed links between leading modes of PW and AT highlight important role of thermodynamics in summertime PW variability over Europe. Detected relatively weak and unstable links between leading modes of PW and precipitation over Europe were somewhat expected since in contrast to atmospheric moisture, regional precipitation variability is largely driven by the atmospheric dynamics (particularly, the NAO).  相似文献   

12.
姜大膀  司东  郎咸梅 《气象学报》2020,78(3):379-390
基于气温和降水观测资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)大气再分析资料,系统评估了大样本初始化十年际预测试验(CESM-DPLE)对1959—2016年东亚夏季气候预测的能力。结果表明,CESM-DPLE能较好地模拟东亚夏季气候以及相关主要大气环流系统的基本态特征,在年际尺度上对东亚气温有很高的预测技巧但对降水几乎没有预测能力。CESM-DPLE再现了北大西洋多年代际振荡(AMO)经由激发遥相关波列所引起的中高纬度大气环流、东亚夏季风和气候的异常。20世纪90年代末之后,北大西洋多年代际振荡由冷位相转为暖位相,遥相关波列位相调整,东亚受异常低压控制,东亚夏季风偏强,夏季气温偏高、降水偏多。总体上,尽管还存在着不足,但CESM-DPLE对东亚夏季温度年际变化以及与20世纪90年代末北大西洋多年代际振荡位相转变相联的东亚夏季气候年代际变化具备一定的预测能力,是目前研究和预测东亚气候变化的一套较好试验数据。  相似文献   

13.
Since much of the flow of the Indus River originates in the Himalayas, Karakoram and Hindu Kush Mountains, an understanding of weather characteristics leading to precipitation over the region is essential for water resources management. This study examines the influence of upper level mid-latitude circulation on the summer precipitation over upper Indus basin (UIB). Using reanalysis data, a geopotential height index (GH) is defined at 200 hPa over central Asia, which has a significant correlation with the precipitation over UIB. GH has also shown significant correlation with the heat low (over Iran and Afghanistan and adjoining Pakistan), easterly shear of zonal winds (associated with central Asian high) and evapotranspiration (over UIB). It is argued that the geopotential height index has the potential to serve as a precursor for the precipitation over UIB. In order to assess the influence of irrigation on precipitation over UIB, a simplified irrigation scheme has been developed and applied to the regional climate model REMO. It has been shown that both versions of REMO (with and without irrigation) show significant correlations of GH with easterly wind shear and heat low. However contrary to reanalysis and the REMO version with irrigation, the REMO version without irrigation does not show any correlation between GH index and evapotranspiration as well as between geopotential height and precipitation over UIB, which is further confirmed by the quantitative analysis of extreme precipitation events over UIB. It is concluded that although atmospheric moisture over coastal Arabian sea region, triggered by wind shear and advected northward due to heat low, also contribute to the UIB precipitation. However for the availability of necessary moisture for precipitation over UIB, the major role is played by the evapotranspiration of water from irrigation. From the results it may also be inferred that the representation of irrigated water in climate models is unavoidable for studying the impact of global warming over the region.  相似文献   

14.
An ocean analysis, assimilating both surface and subsurface hydrographic temperature data into a global ocean model, has been produced for the period 1958–2000, and used to study the time and space variations of North Atlantic upper ocean heat content (HC). Observational evidence is presented for interannual-to-decadal variability of upper ocean thermal fluctuations in the North Atlantic related to the North Atlantic Oscillation (NAO) variability over the last 40 years. The assimilation scheme used in the ocean analysis is a univariate, variational optimum interpolation of temperature. The first guess is produced by an eddy permitting global ocean general circulation forced by atmospheric reanalysis from the National Center for Environmental Prediction (NCEP). The validation of the ocean analysis has been done through the comparison with objectively analyzed observations and independent data sets. The method is able to compensate for the model systematic error to reproduce a realistic vertical thermal structure of the region and to improve consistently the model estimation of the time variability of the upper ocean temperature. Empirical orthogonal function (EOF) analysis shows that an important mode of variability of the wintertime upper ocean climate over the North Atlantic during the period of study is characterized by a tripole pattern both for SST and upper ocean HC. A similar mode is found for summer HC anomalies but not for summer SST. Over the whole period, HC variations in the subtropics show a general warming trend while the tropical and north eastern part of the basin have an opposite cooling tendency. Superimposed on this linear trend, the HC variability explained by the first EOF both in winter and summer conditions reveals quasi-decadal oscillations correlated with changes in the NAO index. On the other hand, there is no evidence of correlation in time between the NAO index and the upper ocean HC averaged over the whole North Atlantic which exhibits a substantial and monotonic warming trend during the last two decades of the analysis period. The maximum correlation is found between the leading principal component of winter HC anomalies and NAO index at 1 year lag with NAO leading. For SST anomalies significant correlation is found only for winter conditions. In contrast, for HC anomalies high correlations are found also in the summer suggesting that the summer HC keeps a memory of winter conditions.  相似文献   

15.
周连童  黄荣辉 《大气科学》2008,32(6):1276-1288
利用1951~2000年我国西北干旱、 半干旱区地温、 气温和表面风场逐日4个时次 (02、 08、 14和20时) 的台站观测资料, 计算并分析了我国西北干旱、 半干旱区春、 夏季感热的年代际变化特征。分析结果表明: 中国西北干旱、 半干旱区春、 夏季感热输送出现相反的年代际变化特征, 春季感热从20世纪70年代中期开始增强, 而夏季感热却减弱了。并且还分析了中国西北干旱、 半干旱区4月感热与中国夏季降水的相关关系, 其结果表明了中国西北干旱、 半干旱区的春季感热输送与中国夏季降水有很好的相关关系, 其中正相关区分别位于东北地区和长江中下游地区, 而负相关区分别位于华北地区和西南地区。作者还利用欧洲中心 (ECMWF) 1958~2000年再分析资料分析水平和垂直环流的年代际变化特征, 在1977~2000年期间, 中国西北地区春季感热增强, 使此地区上升气流增强, 华北地区上空下沉气流增强, 不利于华北地区夏季降水偏多, 并出现持续性干旱, 而长江流域的上升气流增强有利于长江中下游地区夏季降水增多, 出现洪涝。因此, 西北地区春季感热异常可以作为我国夏季降水的一个预报因子。  相似文献   

16.
东海黑潮区潜热变化对中国春季降水的影响及其影响过程   总被引:2,自引:0,他引:2  
本文利用美国NCEP/NCAR再分析资料、哈德来(Hadley)中心海温数据、国家气候中心的观测站降水和客观分析海气通量(OAFlux)潜热感热通量资料,研究了1960~2010年春季黑潮区潜热输送对中国春季降水的影响及其影响过程。本文以黑潮流经的中国东部海域及邻近海域为研究对象,该区域是黑潮的主体区域,在文中简称为东海黑潮区。对中国东海以及邻近海域海温与降水的分析表明,在夏季该区域可能以大气强迫海洋为主,而在春冬两季可能主要为海洋强迫大气为主,秋季则可能为不明显的海气相互作用。在春季西北太平洋区域中感热和潜热都对黑潮流经的区域有比较好的敏感性,黑潮流经区域感热和潜热的气候平均值分别约为30 W m-2与120 W m-2;春季的感热通量标准差大值区主要集中在日本以西区域,潜热通量标准差主要集中在中国东海区域与日本东南区域(即东海黑潮区域)。春季潜热EOF第一模态的主要变化就集中在东海黑潮流域。相关分析与合成分析的结果表明,当黑潮潜热指数为正时,华南地区春季降水偏多,长江以北地区偏少,反之亦然。在物理过程分析中,黑潮潜热指数大于0.8时,长江以南的中国大陆有比较强盛的异常北风,使得水汽无法输送到更北的地区,导致在华南地区水汽的积累,并且在海面出现有利于降水的垂直运动异常延伸到大陆上,使华南地区降水增多,而长江以北的东部地区由于水汽输送偏弱,导致水汽积累偏少,从而降水减少。当黑潮指数小于-0.8时,有较强盛的异常南风,有利于水汽输送到北方地区,水汽在华北地区积累,导致长江以北出现降水正异常,而华南地区由于南风偏强,水汽输送加强,导致水汽无法在此区域积累,并且出现不利于降水的垂直运动异常,从而导致降水偏少。  相似文献   

17.
Proposed are a set of new regional flood/drought indices and a scheme of grading their severity whereby 1951-2000 summer wet/dry events are investigated for North China (NC) in terms of 160 station monthly precipitation data from NCC (China National Center of Climate).Results suggest that 7 heavy droughts during 1951-2000 are 1965,1968,1972,1980,1983,1997 and 1999,while 6 heavy floods are 1954,1956,1959,1964,1973 and 1996. Based on 1951-2000 summer flood/drought severity graded by the new scheme,atmospheric circulation characteristics associated with the disasters over the NC are addressed in terms of monthly NCEP (National Centers for Environmental Prediction) reanalysis of geopotential heights,winds,surface temperature and PW (precipitable water).Evidences suggest that prominent anomalies benefiting to the heavy droughts occur over the Northern Hemisphere.The variations over middle-high latitudes especially the negative ones on Ural Mountain to western Siberia deepen the normal trough there and are indicative of stronger than normal cold air activity. At middle latitudes,remarkable positive anomalies present on the south to Baikal lead to the fact that the normal ridge shifts eastward over NC concomitant with anomaly sinking motion in the whole troposphere,which is helpful for the maintenance of the continent high.And the opposed ones over Korea and Japan force the trough moving eastward running against northwestward shifting of the western Pacific subtropical high.In addition,the anomaly west-east pressure gradient at middle latitudes profits northerly flow there.The southerly monsoon flow at low levels is weaker than normal with weak East Asian summer monsoon,and the related water vapor transportation is also weak with deficit PW over NC.Besides,sea surface temperature (SST) rises in the equatorial eastern and central Pacific and associated convective region moves to the east accordingly companied with weak Walker circulation in the droughts.And the opposed situations will occur during the floods.  相似文献   

18.
基于1979~2017年欧洲中期天气预报中心(ECMWF)提供的ERA-Interim逐日再分析资料和热力学方程,本研究估算了大气视热源,分析研究了青藏高原夏季大气视热源的异常与中国东部降水关系的年代际变化,以及青藏高原大气视热源影响我国东部夏季降水的物理机制。结果表明:(1)高原热源东、西部反相变化模态的重要性发生了年代际转变,表现为由1994年之前方差贡献相对小的第二变异模态变为1994之后方差贡献明显增大而成为第一主导变异模态。(2)青藏高原夏季大气视热源的东、西反相变化模态与中国东部降水的关系存在年代际变化。1993年之前和2008年之后,高原大气视热源的异常分别仅与长江下游降水和长江中游降水异常存在密切的联系;而在1994~2007年,其对长江流域及附近区域和华南地区的夏季降水的影响显著,具体表现为,当高原夏季大气视热源异常表现为东强西弱(东弱西强)时,长江中上游、江淮地区的降水偏多(少),华南地区降水偏少(多)。(3)高原大气视热源显著影响我国东部夏季降水主要是通过经高原上空发展加强的天气系统东移过程影响长江流域及附近地区的降水,以及通过垂直环流影响华南地区的降水。  相似文献   

19.
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June–August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.  相似文献   

20.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号