首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

2.
3.
Time series of vertically integrated concentrations (VIC) across neutrally buoyant plumes are used to study the fractal and multifractal characteristics of passive scalar fluctuations in turbulent flow fields. Here, the multifractal analysis is based on a novel definition of the singularity spectrum-F() of the time records. Approximations for quantities such as the fractal dimension and the spectral exponent are derived as functions ofF() and are compared with the experimental results. Among other things, we show that VIC records are characterized by two typical subdomains. One domain, which is related to integrated concentration fluctuations, is a subfractal process; whereas the second one, which is directly related to the concentration fluctuations, is a fractal process.  相似文献   

4.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

5.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

6.
Vertical profiles of stratospheric HO2 and NO2 concentrations were determined using matrix isolation and ESR. Up to 10 different samples per flight were collected in situ by a balloon borne cryosampler. Free radicals and trace constituents which are condensable at 68 K are trapped in a polycristalline H2O or D2O matrix. After collection, the samples are stored at a temperature below 83 K until they are analysed in the laboratory by X-band ESR spectroscopy at 4 K. The HO2 and NO2 were identified and calibrated by comparison with standard samples collected in the laboratory under typical stratospheric sampling conditions. From several flights over Southern France (44°N) we obtained two profiles of the stratospheric NO2 mixing ratio. One, from 21 October 1982, agrees well with previous measurements. The other, from 8 October 1981, is lower by one order of magnitude. The few HO2 data obtained around 35 km altitude agree with previous measurements. An isolated measurement at 17 km altitude is one order of magnitude higher than the model predicted HO2 concentration.  相似文献   

7.
A correction model for eddy correlation flux measurements is developed and applied to nitrogen dioxide flux measurements obtained from a SOLENT sonic anemometer and a Scintrex Luminox LMA-3 analyser for NO2. Four field campaigns were carried out near the village of Merenschwand in Central Switzerland from which two were selected for further analysis in this paper. The need for the correction of measured eddy covariance fluxes arises due to the damping loss of the NO2 analyser at high frequencies. This damping loss is described by an analogy to inductance in an electronical alternating current circuit. The independent variables in the correction model are:z (measuring height above zero-plane displacement), (mean horizontal wind speed), (Monin-Obukhov stability parameter),f (natural frequency) and inductanceL. The value for inductanceL can be derived from spectral and cospectral analysis. The theoretical cospectrum of an ideal measurement is taken from Kaimalet al. (1972) and extended with a damping term in order to describe the real measurements of the cospectrum. The inductanceL of the LMA-3 with a 0.6 cm teflon aspiration tube of 5 m length lies in the order of 0.30 to 0.35 for the dataset from Merenschwand. With this inductance, a correction factor of 1.17 in August/September 1992 and of 1.18 in May 1993 was determined for the NO2 flux maxima during daytime. The range of the correction factor is 1.05 to 1.31 for the mean daily cycles of both datasets.  相似文献   

8.
The characteristics of a Lyman-alpha humidiometer have been carefully examined in an air-conditioned test chamber. The results confirm that when carefully used, this humidiometer is suitable for measurements of turbulent humidity fluctuations. Measurements with a Lyman-alpha humidiometer were carried out in the surface boundary layer over the ocean. The relation between turbulent intensity ( a = a ov2) and the friction humidity (a *) can be expressed as a = l.6a *. The spectrum of turbulent humidity for wind speeds larger than 3 m s –1 conforms to the similarity law in the surface boundary layer. The spectrum has two characteristic normalized frequencies, namely, a higher peak and a secondary peak (or a shoulder).  相似文献   

9.
Summary In a previous study the authors have estimated the probable maximum precipitation (PMP) for a 2-day duration using Hershfield's formulaX PMP =X n +k m n for stations in the southern Indian region. In this paper, the study is extended to estimate the PMP for stations in the north Indian region, north of 20°N. Maximum annual 2-day rainfall data for an 80-year period, from 1901, were obtained for 286 stations in the region. A mathematical relationship between the frequency factor (k m ) and the mean annual extreme rainfall (X n ) was developed to bek m = 18.15 exp (–0.0448X n ). This equation was used to obtaink m for different values ofX n and, subsequently, to estimate 2-day PMP values for the 286 stations. Using these PMP estimates, a generalised chart was prepared, showing the spatial distribution of 2-day PMP. It was found that 2-day PMP over the north Indian region varied from 60 cm to 130 cm, and the average ratio of the 2-day PMP to the highest observed 2-day rainfall was found to be 1.91. The results show that there have been instances when almost 2-day point PMP have occurred at some of the stations in the region. These results indicate that the statistically estimated PMP rainall are not therefore, mere theoretical estimates, but they can occur under optimum meteorological conditions.With 4 Figures  相似文献   

10.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

11.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   

12.
A calibration equation and some results of the field performance of an infrared instrument, which is designed to measure simultaneous fluctuations of atmospheric carbon dioxide and water vapor, are described. Field observations show that the instrument is suitable for simultaneous measurement of turbulent fluxes of carbon dioxide and water vapor in conjunction with a sonic anemometer. Measured values of carbon dioxide and water vapor fluxes show diurnal variations characterized by crop activity with respect to assimilation, respiration and evapotranspiration. Carbon dioxide is transferred downward during the daytime and upward at night, while latent heat and sensible heat are transferred in the opposite sense. The non-dimensional gradient of carbon dioxide is expressed in the following form under weak unstable conditions: c = (1 – 16 v )-1/2. Here, v is the Monin-Obukhov stability parameter including the humidity effect. This relation was originally proposed for temperature and humidity. Thus, the results indicate that the turbulent mechanisms of carbon dioxide fluctuations are similar to those of other scalar entities. This is strongly supported by the high correlation coefficient found between fluctuations of carbon dioxide and temperature or humidity in the air layer over crop fields.  相似文献   

13.
A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.  相似文献   

14.
Results from numerical investigations regarding the exchange of HNO3, NH3, and NH4NO3 between the atmosphere and the biosphere are presented. The investigations were performed with a modified inferential method which is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these nitrogen compounds. This modified inferential method calculates the micrometeorological quantities (such as the friction velocity and the fluxes of sensible and latent heat), the height-invariant fluxes of the composed chemically conservative trace species with group concentrationsc 1=[HNO3]+[NH4NO3] (total nitrate),c 2=[NH3]+[NH4NO3] (total ammonia), andc 3=[HNO3]-[NH3] as well as the fluxes of the individual nitrogen compounds. The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The modified inferential method requires only the data of wind velocity, temperature, humidity and concentrations (HNO3, NH3, and NH4NO3) measured at a reference height by stations of a monitoring network.  相似文献   

15.
Summary Variability of atmospheric turbidity calculated from direct beam solar radiation measurements and the transverse coherence length,r 0, derived from differential image motion of stellar sources show pronounced fluctuations on the order of a few minutes under convectively unstable conditions in a desert environment. The quiescent periods, neutral events, when local near surface adiabatic conditions occur show substantial reductions in the fluctuations of the same quantities. Image motion results for nighttime (stable) conditions display slowing varying patterns with reduced short term (few minutes) variations.The measurements were taken using a suite of instrumentation probing the same volume of atmosphere. The instrumentation used includes a pyrheliometer, Atmospheric Turbulence Measurement and Observation System (ATMOS), a sodar, a scintillometer, and tower- mounted sensors. A time-height display of sodar data calibrated for the refractive index structure parameter,C n 2 , coupled with scintillometer measurements show the diurnal evolution of the boundary layer responding to the local heating-cooling cycle and drainage flows from the surrounding mountains. Several atmospheric features are seen and discussed in these results as they affect the nature of the patterns of turbidity andr 0. Of particular interests are the development of convection, changes in the capping inversion, thermal plume structures, neutral events, and wave-turbulence interactions. Sinusoidal oscillations, identified as internal gravity waves, are seen in the nighttime laminated structures.With 10 Figures  相似文献   

16.
In this paper we quantify the CH4, CO2 and NO x emissions during routine operations at a major oil and gas production facility, Prudhoe Bay, Alaska, using the concentrations of combustion by products measured at the NOAA-CMDL observatory at Barrow, Alaska and fuel consumption data from Prudhoe Bay. During the 1989 and 1990 measurement campaigns, 10 periods (called events) were unambiguously identified where surface winds carry the Prudhoe Bay emissions to Barrow (approximately 300 km). The events ranged in duration from 8–48 h and bring ambient air masses containing substantially elevated concentrations of CH4, CO2 and NO y to Barrow. Using the slope of the observed CH4 vs CO2 concentrations during the events and the CO2 emissions based on reported fuel consumption data, we calculate annual CH4 emissions of (24+/–8)×103 metric tons from the facility. In a similar manner, the annual NO x emissions are calculated to be (12+/–4)×103 metric tons, which is in agreement with an independently determined value. The calculated CH4 emissions represent the amount released during routine operations including leakage. However this quantity would not include CH4 released during non-routine operations, such as from venting or gas flaring.  相似文献   

17.
This paper describes laboratory experiments designed to obtain the infrared spectra of some atmospherically important radical species and related compounds. A Fourier transform spectrometer was used that was capable of yielding resolutions as great as 0.0024 cm-1, and optical paths of up to 512 m were employed. The objective of the experiments was to obtain the spectra for subsequent application to remote sounding measurements in the atmosphere.Radicals were generated by a variety of chemical reactions involving atoms or other highly reactive precursors. Spectra of the 3 band of NO3, at ca. 1500 cm-1, were obtained with up to 0.005 cm-1 resolution using the reaction between NO2 and O3 to produce the radical. The most satisfactory source of ClO was found to be the reaction between Cl and O3, and the (1-0) vibration-rotation band in the region 829–880 cm-1 was recorded at a resolution of 0.02 cm-1. We were unable to observe infrared absorption of HO2 with any of the radical sources that we tested. High-resolution survey spectra were obtained of compounds used as reactants, or formed as side-products in the radical-generating processes. These compounds included N2O5, HNO3, ClONO2, FNO2, Cl2O, HO2NO2, and probably FO2.The ability to monitor concentrations of the NO3 radical in the visible region of the spectrum as well as the concentrations of reactants and other products in the infrared region allowed us to undertake a study of the time-dependent interactions occurring when NO2 reacts with O3. The results indicate the importance of heterogeneous processes, especially when traces of water are present, and lend credence to suggestions that heterogeneous mechanisms in the NO3–N2O5–H2O system might be a viable source of HNO3 in the atmosphere.  相似文献   

18.
A meandering plume model that explicitly incorporates the effects of small-scale structure in the instantaneous plume has been formulated. The model requires the specification of two physically based input parameters; namely, the meander ratio,M, which is dependent on the ratio of the meandering plume dispersion to the instantaneous relative plume dispersion and, a relative in-plume fluctuation measure,k, that is related inversely to the fluctuation intensity in relative coordinates. Simple analytical expressions for crosswind profiles of the higher moments (including the important shape parameters such as fluctuation intensity, skewness, and kurtosis) and for the concentration pdf have been derived from the model. The model has been tested against some field data sets, indicating that it can reproduce many key aspects of the observed behavior of concentration fluctuations, particularly with respect to modeling the change in shape of the concentration pdf in the crosswind direction.List of Symbols C Mean concentration in absolute coordinates - C r Mean concentration in relative coordinates - C0 Centerline mean concentration in absolute coordinates - C r,0 Centerline mean concentration in relative coordinates - f Probability density function of concentration in absolute coordinates - f c Probability density function of plume centroid position - f r Probability density function of concentration in relative coordinates - i Absolute concentration fluctuation intensity (standard deviation to mean ratio) - i r Relative concentration fluctuation intensity (standard deviation to mean ratio) - k Relative in-plume fluctuation measure:k=1/i r 2 - K Concentration fluctuation kurtosis - M Meander ratio of meandering plume variance to relative plume variance - S Concentration fluctuation skewness - x Downwind distance from source - y Crosswind distance from mean-plume centerline - z Vertical distance above ground - Instantaneous (random) concentration - Crosswind dispersion ofnth concentration moment about zero - ny Mean-plume crosswind (absolute) dispersion - y Plume centroid (meandering) dispersion in crosswind direction - y,c Instantaneous plume crosswind (relative) dispersion - Normalized mean concentration in absolute coordinates:C/C 0 - Particular value taken on by instantaneous concentration,   相似文献   

19.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

20.
Laboratory and field measurements have been performed in order to improve our understanding of the HCl air-snow transfer function. The solubility and diffusion of HCl in laboratory grown single crystals of ice have been measured as a function of HCl partial pressure,P HCl, between –8 and –25 °C. Measurements ofP HCl and of the mole fraction of HCl in snow,X'HCl, have been measured at Summit, Greenland. Comparison of the field and laboratory measurements show that theX'HCl values are well below equilibrium values. The major processes involved in the formation of snow crystals and in their evolution after deposition are discussed in order to attempt to understand theX'HCl values and their variations. The discussion is focussed on a few well identified snow layers. It is concluded that sublimation and recrystallization of snow probably play a major role in the evolution ofX'HCl, but that our understanding of the HCl transfer function is very incomplete. Laboratory and field measurements are suggested to improve this situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号