首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The VUV emission spectra from the solar atmosphere and stellar atmospheres have been intensively studied during the past 25 years with several major space programs. In this review we discuss the spectroscopic diagnostic techniques used to study astrophysical plasmas, the atomic processes involved, the recent observations and the plans for future space missions.  相似文献   

2.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A semiclassical theory describing the emission and absorption of waves is applied to the interaction of charged particles with waves in magnetized plasmas. Spontaneous emission of all cold plasma wave modes is calculated in detail. The method gives the absorption coefficient for the waves and a diffusion equation in momentum space for the particles describing the effects of the induced processes.Coefficients describing the systematic change of particle parameters follow from the diffusion equation. Applications of astrophysical interest are outlined.  相似文献   

4.
The theory of pulsar radio emission is reviewed critically, emphasizing reasons why there is no single, widely-accepted emission mechanism. The uncertainties in our understanding of how the magnetosphere is populated with plasma preclude predicting the properties of the emission from first principles. Some important observational features are incorporated into virtually all the proposed emission mechanisms, and other observational features are either controversial or fail to provide criteria that clearly favor one mechanism over others. It is suggested that the criterion that the emission mechanism apply to millisecond, fast young, and slow pulsars implies that it is insensitive to the magnetic field strength. It is argued that coherent emission processes in all astrophysical and space plasmas consist of emission from many localized, transient subsources, that any theory requires both an emission mechanism and a statistical theory for the subsource, and, that this aspect of coherent emission has been largely ignored in treatments of pulsar radio emission. Several specific proposed emission mechanisms are discussed critically: coherent curvature emission by bunches, relativistic plasma emission, maser curvature emission, cyclotron instability and free electron maser emission. It is suggested that some form of relativistic plasma emission is the most plausible candidate although one form of maser curvature emission and free electron maser emission are not ruled out. Propagation effects are discussed, emphasizing the interpretation of jumps between orthogonal polarizations.  相似文献   

5.
Some successful features of the theory of radiation from plasma instabilities in space plasmas are reviewed, with emphasis on plasma emission in type III solar radio bursts due to the bump-in-tail instability, and planetary radio emissions due to loss-cone driven electron cyclotron maser emission. The emission occurs in sporadic, localized bursts, and the theory for the instability needs to be combined with some statistical ideas to model the observed emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
After initial claims and a long hiatus, it is now established that several binary stars emit high- (0.1–100 GeV) and very high-energy (>100 GeV) gamma rays. A new class has emerged called “gamma-ray binaries”, since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary (η Car) have also been detected—“related systems” that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common? What drives their high-energy emission? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as the components revolve on their orbit. I explain the basic ingredients that models of gamma-ray binaries use, the challenges that they currently face, and how they can bring insights into the physics of pulsars. I discuss how gamma-ray emission from microquasars provides a window into the connection between accretion–ejection and acceleration, while η Car and novae raise new questions on the physics of these objects—or on the theory of diffusive shock acceleration. Indeed, explaining the gamma-ray emission from binaries strains our theories of high-energy astrophysical processes, by testing them on scales and in environments that were generally not foreseen, and this is how these detections are most valuable.  相似文献   

7.
Similarity theory, which is necessary in order to apply the results of laboratory astrophysics experiments to relativistic astrophysical plasmas, is presented. The analytical predictions of the similarity theory are compared with PIC numerical simulations and the most recent experimental data on monoenergetic electron acceleration in diluted plasmas and high harmonic generation at overdense plasma boundaries. We demonstrate that similarity theory is a reliable tool for explaining a surprisingly wide variety of laboratory plasma phenomena the predictions of which can be scaled up to astrophysical dimensions.  相似文献   

8.
We discuss nonlinear mode-mode coupling phenomena in cosmic plasmas. Four problems are considered: (1) nonlinear three-wave processes in the planetary magnetosphere involving the interaction of auroral Langmuir, Alfvén and whistler waves, (2) nonlinear three-wave processes in the solar wind involving the modulation of Langmuir and electromagnetic waves by ion-acoustic waves, (3) order and chaos in nonlinear four-wave processes in cosmic plasmas, and (4) regular and chaotic dynamics of the relativistic Langmuir turbulence and its application to pulsar and AGN emissions. The observational evidence in support of nonlinear wave-wave interactions in space and astrophysical plasmas is presented.  相似文献   

9.
Some recent developments in the study of relativistic jets in active galactic nuclei and microquasars are reviewed. While it has been well established for some time that extragalactic jets found in radio galaxies, quasars, and BL Lac objects are the site of ultrarelativistic particle acceleration, the recent identification of the Galactic jet source and microquasar LS~5039 as a source of very-high-energy gamma-ray emission has underlined the striking similarity between the two types of astrophysical jet sources. In this paper, I will present an overview of the dominant radiation and particle acceleration processes and observational tests to distinguish between such processes. The wide-ranging analogies between Galactic and extragalactic jets, but also their distinct differences, in particular those caused by the presence of the companion star in Galactic microquasar systems, will be exposed.  相似文献   

10.
The behavior of dispersive Alfven waves (DAWs) in astrophysical plasmas of finite and high pressure, which have not been considered thus far, is studied in the hydrodynamic approximation. The results are analyzed and compared with those obtained in the kinetic approach. It is shown that one general solution for DAWs in plasmas of finite and high pressure can be obtained using the hydrodynamic approach in contrast to the kinetic one. Kinetic and hydrodynamic solutions correspond to each other very well in a domain with weakly damped DAWs; however, solutions may differ appreciably in some parameter domains, especially in high-pressure plasma. The effect of parameters of the astrophysical medium on the DAW behavior and properties is analyzed. All the main wave characteristics were determined: dispersion, damping, polarization, density perturbations, and charge density perturbations. Since finite-pressure plasma is one of the most frequently encountered states of astrophysical plasma, it is very important to take into account specific features in behavior of these waves for their detecting and a more correct understanding of their behavior and the role they play in different astrophysical processes that occur in space environment.  相似文献   

11.
In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.  相似文献   

12.
Plasma science is rich in distinguishable scales ranging from the atomic to the galactic to the meta-galactic, i.e., themesoscale. Thus plasma science has an important contribution to make in understanding the connection between microscopic and macroscopic phenomena. Plasma is a system composed of a large number of particles which interact primarily, but not exclusively, through the electromagnetic field. The problem of understanding the linkages and couplings in multi-scale processes is a frontier problem of modern science involving fields as diverse as plasma phenomena in the laboratory to galactic dynamics.Unlike the first three states of matter, plasma, often called the fourth state of matter, involves the mesoscale and its interdisciplinary founding have drawn upon various subfields of physics including engineering, astronomy, and chemistry. Basic plasma research is now posed to provide, with major developments in instrumentation and large-scale computational resources, fundamental insights into the properties of matter on scales ranging from the atomic to the galactic. In all cases, these are treated as mesoscale systems. Thus, basic plasma research, when applied to the study of astrophysical and space plasmas, recognizes that the behavior of the near-earth plasma environment may depend to some extent on the behavior of the stellar plasma, that may in turn be governed by galactic plasmas. However, unlike laboratory plasmas, astrophysical plasmas will forever be inaccessible to in situ observation. The inability to test concepts and theories of large-scale plasmas leaves only virtual testing as a means to understand the universe. Advances in in computer technology and the capability of performing physics first principles, fully three-dimensional, particle-in-cell simulations, are making virtual testing a viable alternative to verify our predictions about the far universe.The first part of this paper explores the dynamical and fluid properties of the plasma state, plasma kinetics, and the radiation emitted from plasmas. The second part of this paper outlines the formulation for the particle-in-cell simulation of astrophysical plasmas and advances in simulational techniques and algorithms, as-well-as the advances that may be expected as the computational resource grows to petaflop speed/memory capabilities.Dedicated to the memories of Hannes Alfvén and Oscar Buneman; Founders of the Subject.  相似文献   

13.
Millisecond radio spikes   总被引:9,自引:0,他引:9  
A. O. Benz 《Solar physics》1986,104(1):99-110
Millisecond spikes of the solar radio emission are known for more than two decades. They have recently seen a surge in interest of theoreticians who are fascinated by their high brightness temperature of up to 1015 K, their association with hard X-ray bursts, and a possibly very intimate relation to electron acceleration. This review is intended to bridge the gap that presently seems to separate theory and observations. The wide range of spike observations is summarized and brought into the perspective of recent models. It is concluded that spikes yield a considerable potential for the diagnostics of energetic particles, their origin, and history in astrophysical plasmas.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

14.
Charge exchange (CX), both onto ions in the solar wind and potentially in other astrophysical contexts, can create X‐ray emission lines largely indistinguishable from those created in collisional or photoionized plasmas. The prime distinguishing characteristic is in the distinctly different line ratios generated by the CX process. A complete astrophysical model of the process would require a vast number of atomic calculations; we describe here an approximate approach that will allow astronomers to evaluate the likely contribution of CX to an observed spectrum. The method relies upon an approximate calculation of the CX cross section paired with detailed atomic structure calculations used to determine the emission lines. Simulated spectra based on observed solar wind CX data are shown for both current (Suzaku) and near‐term (Astro‐H) missions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
The properties of waves able to propagate in a relativistic pair plasma are at the basis of the interpretation of several astrophysical observations. For instance, they are invoked in relation to radio emission processes in pulsar magnetospheres and to radiation mechanisms for relativistic radio jets. In such physical environments, pair plasma particles probably have relativistic, or even ultrarelativistic, temperatures. Besides, the presence of an extremely strong magnetic field in the emission region constrains the particles to one-dimensional motion: all the charged particles strictly move along magnetic field lines.
We take anisotropic effects and relativistic effects into account by choosing one-dimensional relativistic Jűttner–Synge distribution functions to characterize the distribution of electrons and/or positrons in a relativistic, anisotropic pair plasma. The dielectric tensor, from which the dispersion relation associated with plane wave perturbations of such a pair plasma is derived, involves specific coefficients that depend on the distribution function of particles. A precise determination of these coefficients, using the relativistic one-dimensional Jűttner–Synge distribution function, allows us to obtain the appropriate dispersion relation. The properties of waves able to propagate in anisotropic relativistic pair plasmas are deduced from this dispersion relation. The conditions in which a beam and a plasma, both ultrarelativistic, may interact and trigger off a two-stream instability are obtained from this same dispersion relation. Two astrophysical applications are discussed.  相似文献   

17.
18.
The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed.  相似文献   

19.
It is widely believed that magnetic reconnection plays an important role in various eruptive phenomena of space and astrophysical plasmas.The mechanism of anomalous resistivity,however,has been an open and unsolved problem.The chaos-induced resistivity proposed by Yoshida et al.is one of possible mechanisms for anomalous resistivity.By use of the test particle simulation,the present work studies the chaos-induced resistivity for different configurations of reconnection magnetic fields and its distribution in different chaos regions of reconnection current sheets.The results show that the chaos-induced resistivity can be 6-7 orders of magnitude higher than the classical Spitzer resistivity in the X-type chaos regions and 5 orders of magnitude in the O-type chaos regions.Moreover,in the X-type chaos regions the chaosinduced resistivity of the magnetized case is higher by a factor of 2 to 3 times than that of the unmagnetized case,but in the O-type chaos regions the chaos-induced resistivity of the magnetized case is close to or lower than that of the unmagnetized case.The present work is helpful to the understanding of the dynamics of reconnection current sheets,especially of the generation mechanism of the anomalous resistivity of collisionless reconnection regions.  相似文献   

20.
Solar Orbiter     
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015?–?2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号