首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
山地丘陵地形对地震动的分布有重要的影响,研究地形效应,有利于充分认识地震灾害风险,为减轻灾害损失做好防御措施。基于实际地形建立自贡西山公园观测台阵所在山体的三维有限元模型,研究开发黏弹性人工边界和SH波垂直入射前处理程序,开展动力学数值模拟;数值模拟结果与实际记录进行对比,并验证模型的合理性;研究分析低山丘陵山体对地震动强度及空间分布影响,以及峰值加速度与入射波频率、高程、坡度的关系。结果表明:低山丘陵山顶位置地震动峰值放大明显,而山脚凹陷位置地震动峰值存在削弱现象;地形效应与输入地震动频率密切相关,不同主频的输入地震动所造成的地表峰值加速度分布不同;较高主频的地震动可以凸显地形细节的影响;地表峰值加速度与高程具有较好的正相关关系,与坡度的相关关系较弱。综合高程和坡度拟合峰值加速度的效果优于仅使用高程或坡度的拟合,二元三次多项式拟合效果较好,可用于定量描述地形放大系数随高程和坡度的变化。  相似文献   

2.
2018年9月12日陕西省宁强县发生5.3级地震,中国数字强震动台网的39个专业台站在此次地震中触发。文章中通过处理捕获的117条三分向加速度记录,给出近场台站的地震动参数,绘制震中附近区域峰值加速度等值线图,其长轴呈西南-东北方向展布。采用实际观测数据与几种常用地震动衰减关系对比,发现霍俊荣衰减预测模型能更好地反映此次地震的影响场。将振幅最大的51GYD台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结出此次地震的反应谱基本特征。运用H/V谱比法对51GYD土层台和62ZM台阵进行局部场地地震反应分析,研究覆盖土层对地震动的放大作用,及局部地形对峰值加速度和峰值速度的影响过程。  相似文献   

3.
Risk assessment of spatially distributed building portfolios or infrastructure systems requires quantification of the joint occurrence of ground‐motion intensities at several sites, during the same earthquake. The ground‐motion models that are used for site‐specific hazard analysis do not provide information on the spatial correlation between ground‐motion intensities, which is required for the joint prediction of intensities at multiple sites. Moreover, researchers who have previously computed these correlations using observed ground‐motion recordings differ in their estimates of spatial correlation. In this paper, ground motions observed during seven past earthquakes are used to estimate correlations between spatially distributed spectral accelerations at various spectral periods. Geostatistical tools are used to quantify and express the observed correlations in a standard format. The estimated correlation model is also compared with previously published results, and apparent discrepancies among the previous results are explained. The analysis shows that the spatial correlation reduces with increasing separation between the sites of interest. The rate of decay of correlation typically decreases with increasing spectral acceleration period. At periods longer than 2 s, the correlations were similar for all the earthquake ground motions considered. At shorter periods, however, the correlations were found to be related to the local‐site conditions (as indicated by site Vs30 values) at the ground‐motion recording stations. The research work also investigates the assumption of isotropy used in developing the spatial correlation models. It is seen using the Northridge and Chi‐Chi earthquake time histories that the isotropy assumption is reasonable at both long and short periods. Based on the factors identified as influencing the spatial correlation, a model is developed that can be used to select appropriate correlation estimates for use in practical risk assessment problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Regional seismic risk assessments and quantification of portfolio losses often require simulation of spatially distributed ground motions at multiple intensity measures. For a given earthquake, distributed ground motions are characterized by spatial correlation and correlation between different intensity measures, known as cross‐correlation. This study proposes a new spatial cross‐correlation model for within‐event spectral acceleration residuals that uses a combination of principal component analysis (PCA) and geostatistics. Records from 45 earthquakes are used to investigate earthquake‐to‐earthquake trends in application of PCA to spectral acceleration residuals. Based on the findings, PCA is used to determine coefficients that linearly transform cross‐correlated residuals to independent principal components. Nested semivariogram models are then fit to empirical semivariograms to quantify the spatial correlation of principal components. The resultant PCA spatial cross‐correlation model is shown to be accurate and computationally efficient. A step‐by‐step procedure and an example are presented to illustrate the use of the predictive model for rapid simulation of spatially cross‐correlated spectral accelerations at multiple periods.  相似文献   

5.
震害资料显示,场地条件对地震动特性以及工程结构破坏程度影响显著。为减少因场地效应而造成的经济损失和社会影响,在进行场地地震反应分析时,需最大限度地减小因场地土层模型参数的不确定性引起的地震动评估偏差,为工程结构地震反应分析选取并生成适当的地震动输入。随着强震动观测技术的逐渐发展,大量可靠的钻井台阵记录为地震过程中场地观测点的动力反应提供了直接数据。以美国加州地区La Cienega钻井台阵强震动观测数据为基础,利用互相关函数,对不同强度地震作用下场地土层的平均剪切波速进行分析,并在此基础上,以Cyclic 1D为模拟平台,建立一维自由场地地震反应有限元分析模型。分析结果表明:通过钻井台阵地震动观测数据识别,得到场地平均剪切波速,能够反映该场地的动力特性,数值模拟计算结果和台阵地震动记录基本吻合,可为数值模型参数选取提供依据。  相似文献   

6.
Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo-spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modeling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio.Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5–Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s.The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 3–4 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 6 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to a Mw7.2 scenario earthquake.  相似文献   

7.
唐山响堂三维场地影响观测台阵   总被引:10,自引:0,他引:10  
1994年7月中国地震局工程力学研究所在唐山余震区响堂镇建成了我国第一个三维场地影响观测台阵。该台阵目前有四个测点,分别布设在基岩地表、土层地表、地下17m和地下32m处。它安装了分辨率为16位的井下数字观测系统,主机和从机同步运行,系统时钟采用Omega导航信号自动校对(精度1ms),地震数据采用固态方式(CMOS)存储,每个测点均布设一组 量力平衡式加速度计。该台阵自投入运行至1997年12月  相似文献   

8.
The conventional integral approach is very well established in probabilistic seismic hazard assessment (PSHA). However, Monte‐Carlo (MC) simulations can become an efficient and flexible alternative against conventional PSHA when more complicated factors (e.g. spatial correlation of ground shaking) are involved. This study aims at showing the implementation of MC simulation techniques for computing the annual exceedance rates of dynamic ground‐motion intensity measures (GMIMs) (e.g. peak ground acceleration and spectral acceleration). We use multi‐scale random field technique to incorporate spatial correlation and near‐fault directivity while generating MC simulations to assess the probabilistic seismic hazard of dynamic GMIMs. Our approach is capable of producing conditional hazard curves as well. We show various examples to illustrate the potential use of the proposed procedures in the hazard and risk assessment of geographically distributed structural systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Specially designed arrays of strong motion seismographs located near earthquake sources are required for engineering studies of near-source earthquake properties as well as spatial variation of seismic waves. The SMART-1 array in Tath provides good records for this type of study. Based on the SMART-1 array data, the analysis of the principal direction wave propagation and the space-time correlation of some events recorded by SMART-1 have been studied. A stoce model for predicting the differential ground movement was also developed. This stochastic model includes the effect of source characteristics, attenuation of wave passage and spatial correlation characteristics. The performance of this more discussed and compared with the ground movement recorded by the SMART-1 array. From the present study, it is that spatial correlations do exist as seismic waves propagate across the array site. Generally, the loss of coherence is direction of propagation can be explained by energy at the same frequency exhibiting a slightly different velocity with the measurement intervals. It is also concluded that the phase velocity of seismic waves and the corner frequency of the grep displacement spectrum are controlling factors in the prediction of the root mean square of differential grep displacement.  相似文献   

10.
The reduction in spatial variance of strong ground motion with increasing earthquake magnitude has been reported recently. However, we show that the observed dependence of spatial variance on magnitude is its implicit dependence on the frequency content (dominant frequency) of the wave field. Time-domain cross-correlations of pairs of accelerograms are used to quantify the spatial variations in this paper. Magnitude is one of the factors contributing to the dominant frequency. We attempt to study separately the effects of magnitude, hypocentral distance, peak ground acceleration and focal depth on the dominant frequency in order to find the most significant one. The data base consists of 1965 records of horizontal acceleration from 148 local earthquakes in Taiwan. The analysis shows the overwhelming effect of the source magnitude on the formation of the dominant frequency with an empirical relationship: No significant effect of hypocentral distance, local acceleration amplitude or depth is detected for all their values available (up to 170 km, 250 cm/s2, and 100 km, respectively). The prevailing effect of magnitude on the dominant frequency is a real cause of the consistently observed reduction of spatial variance of ground motion with increasing magnitude of earthquakes.  相似文献   

11.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

12.
The rupture plane for an earthquake has been modelledby using the semi empirical technique of Midorikawa(1993). This technique estimates ground accelerationby modelling the rupture process during an earthquake.Modifications in this technique have been made for itsapplication to the Indian region. This has been tested forthe Uttarkashi earthquake of 20th Oct, 1991, India, whichwas well recorded at thirteen stations of installedstrong motion array in this region. After testingseveral possible rupture models, a final model has beenselected and peak ground acceleration due to thismodel is simulated at thirteen different stations.Dependency of methodology on model parameters, e.g.dip and mode of rupture propagation have also beenstudied in detail.Using this technique synthetic isoseismal maps wereprepared by converting peak ground acceleration intoMMI scale. Dependency of rupture models on syntheticisoseismals has also been studied in detail. Usingthis method, peak ground acceleration for the Laturearthquake of Sept 30, 1993 has been obtained atvarious places within meisoseismal area. Synthetic andfield intensity was compared at various well-knownsites. Since the region was not covered by anyinstrumental array during Latur earthquake, thesimulated peak ground accelerations are expected toserve basis of design criteria in this region.  相似文献   

13.
As a deterministic numerical approach for simulation of earthquake ground motions, the spectral element method (SEM) is applied to generate a broadband acceleration array for dam-canyons instead of the traditional empirical or stochastic methods. Specifically, the SEM analysis model with an extra fine mesh is used for the Pacoima Canyon to simulate the entire path starting from earthquake source rupture via the propagation medium to the local site. The source and the 3D earth model (velocity structure) are validated through the modeling of the Newhall earthquake on 28 October 2012 at a frequency of up to 8 Hz. Subsequently, the San Fernando earthquake records on 13 January 2001 are further used to study the effects of propagation path in simulation. Finally, the spatially varying ground motions at the Pacoima Canyon are obtained for different source mechanisms. The results show that the source mechanism and the local site topography significantly affect the distribution of the peak accelerations along the canyon.  相似文献   

14.
Soil amplification characteristics of earthquake ground motion were investigated in terms of peak ground acceleration and transfer function based on the Chiba array observation records. The amplification of peak ground acceleration occurred mostly at the top soft layer and was similar for the three components. The effects of non-linear response of soil deposits on the transfer function were examined. Transfer functions calculated by ensemble average were close for the two horizontal components while those obtained from a smoothing operation were generally different. Both the transfer functions from the ensemble average and the smoothing operation underestimated the gain factor around the natural frequencies. A two-step smoothing procedure was proposed and a rotary spectrum was used to improve the estimation of the transfer function. Microtremors were observed at the locations of the boreholes where seismometers are buried. The power spectrum and spatial coherency of the microtremors were compared with those of the earthquake ground motion. Emphasis was placed on the wavetypes which dominated the peaks in the power spectra.  相似文献   

15.
基岩地震动的一个相干函数模型-走滑断层情形h   总被引:5,自引:1,他引:5       下载免费PDF全文
目前研究地震动空间变化的主要方法是利用密集台阵(如SMART1台阵等)的强震观测记录进行统计分析,由于地震动观测资料的不足,因而缺少基岩及不同场地类别地震动相干函数模型. 本文利用数值方法了模拟理论地震图,进而研究采用震源位错模型的基岩随机地震动的空间变化规律,并考虑震源破裂速度、子源个数、震源深度和介质传播速度等因素的影响. 其具体思路为:首先对应于每个样本,用有限差分数值模拟方法计算弹性半空间近场地震动场,而后对所有样本的计算结果进行统计,给出了一个走滑断层情形下的近场基岩表面及沿基岩竖直方向水平分量地震动的相干函数模型.   相似文献   

16.
IntroductionEarthquakedamagesurveyandresearchresultshavedemonstratedthatspatialdistributiondifferenceofgroundmotionisoneoftheimportantreasonswhichcausedlongstructure(eglongspanbridge,undergroundpipe)destroy.Thathowtoprovideareasonableinputofgroundmotionfieldforaseismicdesignoflongstructureisaurgentprobleminearthquakeengineeringfield.Atpresent,themethodtostudyspatialvariationofgroundmotionsisadoptingstatisticanalysisbasedondensearrayrecordssuchasSMART-1array,etc,togetcoherencyfunctionofground…  相似文献   

17.
山东地区地震危险性空间分布特征研究   总被引:3,自引:2,他引:1  
概述山东省及其周边的地震环境,并以地震危险性概率分析方法研究山东地区峰值地震加速度空间分布特征。分析不同超越概率水准的峰值地震加速度的比值。结果表明,不同超越概率水准的地震危险性分析结果的比例关系对地震环境具有明显的依赖特征,且总体上服从对数正态概率分布。  相似文献   

18.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

19.
The evaluation of seismic risk of spatially distributed systems requires the spatial correlation model for ground motion intensity measures. This study investigates the spatial correlation of four earthquakes recorded in northern Iran. The intra-event spatial correlation for both horizontal and vertical components of spectral acceleration at eight periods in the range of 0.0–3.0 s is estimated using geostatistical tools. An exponential form is chosen to fit experimental semivariograms, and the correlation ranges of spectral accelerations as a function of period are derived. The results show similar trend of correlation ranges for both components. It should be mentioned that the ranges for the vertical component, in general, are higher than those observed for the horizontal one. For both components, the correlation ranges as a function of period are divided into three segments. The first and the third one are increasing while the second one is decreasing with increasing period.  相似文献   

20.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号