首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Synoptic climatological patterns that produce anomalous wet conditions in central Australia during the period from September to April have been studied. The analysis was done by using observed daily rainfall data at a number of stations, wind and mean sea level pressure from the European Centre for Medium Range Weather Forecasts (ECMWF), Tropical Ocean and Global Atmosphere (TOGA) data from 1985 to 1991, and the CSIRO 9-level (CSIR09) global climate model (GCM) simulated data for 1 × CO2 and 2 × CO2 experiments. On the basis of rainfall values above 99.5 percentile in observed and simulated data, wet days have been selected to study the synoptic-scale weather systems that produce anomalous wet events in central Australia. As the vast majority of days in central Australia are dry, the same number of days with no rainfall for both observed and simulated conditions have been selected randomly. The observed synoptic climatological patterns have been compared with the results of the control simulation of CSIRO9. A comparison between CSIRO9 simulated synoptic patterns and observed synoptic patterns reveals that the model fairly well captures the synoptic climatological characteristics which produce anomalous wet and contrasting dry weather conditions during the period from September to April. Under enhanced greenhouse experiments, the main features of the synoptic patterns are intensified both for wet and dry conditions, which result in an increase in extreme weather conditions, an increase in rainfall intensity, a spatial expansion of the heavy rainfall region during wet days, and an expansion of the dry area during dry days. During anomalous wet conditions, the low pressure area is intensified, monsoonal winds and southeasterlies are strengthened and strong wind shear over tropical Australia is simulated. During this condition, the monsoon shear line moves poleward particularly over the Northern Territory. In contrast, during dry conditions, the anticyclonic circulation over the continent is strengthened.  相似文献   

2.
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1–5, 5–10, 10–20, 20–50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10–20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.  相似文献   

3.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

4.
The possible changes in the frequency of extreme rainfall events in Hong Kong in the 21st century wereinvestigated by statistically downscaling 30 sets of the daily global climate model projections (involvinga combination of 12 models and 3 greenhouse gas emission scenarios,namely,A2,A1B,and B1) of theFourth Assessment Report of the Intergovernmental Panel on Climate Change.To cater for the intermittentand skewed character of the daily rainfall,multiple stepwise logistic regression and multiple stepwise linearregression were employed to develop the downscaling models for predicting rainfall occurrence and rainfallamount,respectively.Verification of the simulation of the 1971-2000 climate reveals that the models ingeneral have an acceptable skill in reproducing past statistics of extreme rainfall events in Hong Kong.Theprojection results suggest that,in the 21st century,the annual number of rain days in Hong Kong is expectedto decrease while the daily rainfall intensity will increase,concurrent with the expected increase in annualrainfall.Based on the multi-model scenario ensemble mean,the annual number of rain day is expected todrop from 104 days in 1980-1999 to about 77 days in 2090-2099.For extreme rainfall events,about 90% ofthe model-scenario combinations indicate an increase in the annual number of days with daily rainfall 100mm (R100) towards the end of the 21st century.The mean number of R100 is expected to increase from 3.5days in 1980-1999 to about 5.3 days in 2090-2099.The projected changes in other extreme rainfall indicesalso suggest that the rainfall in Hong Kong in the 21st century may also become more extreme with moreuneven distributions of wet and dry periods.While most of the model-emission scenarios in general projectconsistent trends in the change of rainfall extremes in the 21st century,there is a large divergence in theprojections among different model/emission scenarios.This reflects that there are still large uncertainties inmodel simulations of future extreme rainfall events.  相似文献   

5.
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.  相似文献   

6.
We analyzed trends, interdecadal variability, and the quantification of the changes in the frequency of daily rainfall for two thresholds: 0.1 mm and percentile 75th, using high quality daily series from 52 stations in the La Plata Basin (LPB). We observed increases in the annual frequencies in spatially coherent areas. This coherence was more marked in austral summer, autumn, and spring, during which the greatest increases occurred in southern Brazil, especially during extreme events. In winter, the low and middle basins of the Río Uruguay and Río Paraná showed negative trends, some of which were significant. Interdecadal variability is well defined in the region with more pronounced positive jumps west of the basin between 1950 and 2000. This variability was particularly more marked during periods of extreme rainfall in summer, autumn, and spring, unlike in winter when extreme daily rainfall in the lower Rio Paraná basin decreased by up to 60%. The changes in the past century during extreme rainfall produced modifications in the annual rainfall cycle. The annual cycle of both indices was broader during the last period which is mainly explained by the strong decreases in winter.  相似文献   

7.
Identifying and removing the influence of atmospheric circulation variability on central England temperature increases the statistical significance of warming trends in spring, autumn and the annual mean over the last 50 years. The trends are more detectable because the circulation changes contribute greatly to the ‘noise’ of interannual to interdecadal variability, but induce only small multi-decadal trends (the ‘signal’). Factoring out the circulation can thus enhance the signal-to-noise ratio. For precipitation, the recent enhancement in the difference between summer rainfall in south-east England and winter precipitation in northern Scotland can partly be explained by atmospheric circulation variability over the past 40 years (particularly the increase in the North Atlantic Oscillation index from the 1960s to the early 1990s).  相似文献   

8.
This study addresses changes in the timing and intensity of precipitation from 1982 to 2016 from three meteorological stations around Calakmul, Mexico, a landscape balancing biodiversity conservation and smallholder agricultural production. Five methods were used to assess changes in precipitation: the Mann-Kendall test of annual and wet season trends; a fuzzy-logic approach to determine the onset of the rainy season; the Gini Index and Precipitation Concentration Index (PCI) to evaluate the temporal distribution of precipitation; Simple Precipitation Intensity Index (SDII) to evaluate precipitation intensity; and the Rainfall Anomaly Index (RAI) to identify the deficit or surplus of rainfall compared with the long-term mean. Overall, rainfall trends in Calakmul over this period indicate a slight increase, though results of the indices (Gini, SDII, PCI) all indicate that rainfall has become more intense and more unevenly distributed throughout the year. There was no significant trend in the onset date of rainfall or the RAI overall, though there were more pronounced crests and troughs from 2004 to 2016. Higher interannual variability and more pronounced rainfall anomalies, both positive and negative, suggest that rainfall in the Calakmul region has become more extreme. This research informs for management and livelihood strategies in the local region and offers insights for analyses of regional patterns of seasonal precipitation events in tropical landscapes worldwide.  相似文献   

9.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

10.
A variable-grid atmospheric general circulation model, LMDZ, with a local zoom over southeast China is used to investigate regional climate changes in terms of both means and extremes. Two time slices of 30?years are chosen to represent, respectively, the end of the 20th century and the middle of the 21st century. The lower-boundary conditions (sea-surface temperature and sea-ice extension) are taken from the outputs of three global coupled climate models: Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM) and Geophysical Fluid Dynamics Laboratory (GFDL). Results from a two-way nesting system between LMDZ-global and LMDZ-regional are also presented. The evaluation of simulated temperature and precipitation for the current climate shows that LMDZ reproduces generally well the spatial distribution of mean climate and extreme climate events in southeast China, but the model has systematic cold biases in temperature and tends to overestimate the extreme precipitation. The two-way nesting model can reduce the ??cold bias?? to some extent compared to the one-way nesting model. Results with greenhouse gas forcing from the SRES-A2 emission scenario show that there is a significant increase for mean, daily-maximum and minimum temperature in the entire region, associated with a decrease in the number of frost days and an increase in the heat wave duration. The annual frost days are projected to significantly decrease by 12?C19?days while the heat wave duration to increase by about 7?days. A warming environment gives rise to changes in extreme precipitation events. Except two simulations (LMDZ/GFDL and LMDZ/IPSL2) that project a decrease in maximum 5-day precipitation (R5d) for winter, other precipitation extremes are projected to increase over most of southeast China in all seasons, and among the three global scenarios. The domain-averaged values for annual simple daily intensity index (SDII), R5d and fraction of total rainfall from extreme events (R95t) are projected to increase by 6?C7, 10?C13 and 11?C14%, respectively, relative to their present-day values. However, it is clear that more research will be needed to assess the uncertainties on the projection in future of climate extremes at local scale.  相似文献   

11.
极端天气和气候事件的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
自1950年以来的观测证据表明,有些极端天气和气候事件已经发生了变化。全球尺度上,人为影响可能已经导致极端日最低和最高温度升高;由于平均海平面上升,人类活动可能已对沿海极端高水位事件的增加产生了影响;具有中等信度的是,人为影响已导致全球强降水增加;由于热带气旋历史记录的不确定性、缺乏对热带气旋与气候变化之间关联的物理机制的完整认识及热带气旋自然变率的程度,将可检测到的热带气旋活动变化归因于人为影响仅具有低信度。将单一的极端事件变化归因于人为气候变化具有挑战性。对极端事件变化预估的信度取决于事件的类型、区域和季节、观测资料的数量和质量、基本物理过程的认知水平及模式对其模拟的可靠性。  相似文献   

12.
In this study we present rainfall results from equilibrium 1 ×– and 2 × CO2 experiments with the CSIRO 4-level general circulation model. The 1 × CO2 results are discussed in relation to observed climate. Discussion of the 2 × CO2 results focuses upon changes in convective and non-convective rainfall as simulated in the model, and the consequences these changes have for simulated daily rainfall intensity and the frequency of heavy rainfall events. In doing this analysis, we recognize the significant shortcomings of GCM simulations of precipitation processes. However, because of the potential significance of any changes in heavy rainfall events as a result of the enhanced greenhouse effect, we believe a first examination of relevant GCM rainfall results is warranted. Generally, the model results show a marked increase in rainfall originating from penetrative convection and, in the mid-latitudes, a decline in largescale (non-convective) rainfall. It is argued that these changes in rainfall type are a consequence of the increased moisture holding capacity of the warmer atmosphere simulated for 2 × CO2 conditions. Related to changes in rainfall type, rainfall intensity (rain per rain day) increases in the model for most regions of the globe. Increases extend even to regions where total rainfall decreases. Indeed, the greater intensity of daily rainfall is a much clearer response of the model to increased greenhouse gases than the changes in total rainfall. We also find a decrease in the number of rainy days in the middle latitudes of both the Northern and Southern Hemispheres. To further elucidate these results daily rainfall frequency distributions are examined globally and for four selected regions of interest. In all regions the frequency of high rainfall events increases, and the return period of such events decreases markedly. If realistic, the findings have potentially serious practical implications in terms of an increased frequency and severity of floods in most regions. However, we discuss various important sources of uncertainty in the results presented, and indicate the need for rainfall intensity results to be examined in enhanced greenhouse experiments with other GCMs.  相似文献   

13.
Recent Progress in Studies of Climate Change in China   总被引:7,自引:0,他引:7  
An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1 . This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000-1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitation variations observed over the past century. Climate models generally perform well in simulating the variations of annual mean SAT in China. They have also been used to project future changes in SAT under varied GHG emission scenarios. Large uncertainties have remained in these model-based projections, however, especially for the projected trends of regional precipitation and extreme climate events.  相似文献   

14.
15.
Summary An important pattern of interannual variability in the southern African region is one where sea surface temperature (SST) in neighbouring waters, particularly in the Agulhas Current, its retroflection region and outflow across the southern midlatitudes of the Indian Ocean, is anomalously warm or cool. Evidence exists of significant rainfall anomalies over large parts of southern Africa during these warm or cool SST events. Here, a general circulation model is used to study the response of the atmosphere in the region to an idealised representation of these SST anomalies. The induced atmospheric circulation and precipitation anomalies over the adjacent southern African landmass on intraseasonal through to interannual time scales are investigated.A nonlinear response to the SST anomalies is found in that the changes to the model atmosphere when warm SST forcing is used are not the reverse (in either pattern or magnitude) to that when cold SST forcing is imposed. For the warm SST anomaly, it is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. However, no such coherent timescale dependent response is found when the cold SST anomaly is impose. It is suggested that the relationship of the SST anomaly to the background seasonal climatology may help explain this fundamental difference in the response.Examination of the circulation and rainfall patterns under warm SST forcing indicates that there are significant anomalies over large parts of southern Africa on all scales from intraseasonal through to interannual. On the south coast, rainfall anomalies result from enhanced evaporation of moisture off the SST anomaly. Over the interior, changer in the convergence of moist air streams together with suggestions of a shift in the Walker circulations between southern Africa and the bordering tropical South Atlantic and Indian Oceans appear to be associated with the rainfall anomalies. Similar mechanisms of rainfall perturbation are found when the cold SST anomaly is imposed; however, there is a significant response only on intra-annual to interannual scales. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. These model results re-inforce previous observational work suggesting that SST anomalies south of Africa, particularly in the retroflection region of the Agulhas Current, are linked with significant rainfall anomalies over the adjacent subcontinent.With 12 Figures  相似文献   

16.
Changes in Extreme Rainfall Events in South Africa   总被引:7,自引:0,他引:7  
Extreme rainfall events can have severe impacts on society, so possible long-term changes in the intensity of extreme events are of concern. Testing for long-term changes in the intensity of extreme events is complicated by data inhomogeneities resulting from site and instrumentation changes. Using rainfall data from stations in South Africa that have not involved site relocations, but which have not been tested for inhomogeneities resulting from changes in instrumentation, a method of testing for changes in the intensity of extreme events is adopted. Significant increases in the intensity of extreme rainfall events between 1931–1960 and 1961–1990 are identified over about 70% of the country. The intensity of the 10-year high rainfall events has increased by over 10% over large areas of the country, except in parts of the north-east, north-west and in the winter rainfall region of the south-west. Percentage increases in the intensity of high rainfall events are largest for the most extreme events. While some inhomogeneities remain in the data used, the observed changes in the intensity of extreme rainfall events over South Africa are thought to be at least partly real.  相似文献   

17.
长江中下游气候的长期变化及基本态特征   总被引:21,自引:9,他引:21  
研究了1885年以来,我国长江中下游四季及年降水量,四季及年平均气温的长期变化,指出长江中下游四个季及年的总降水量(平均气温)都是正的趋势,但有季节的差异,春季是升温同时增雨最显著的季节,还研究了我国长江中下游降水与气温的气候基本态及气候变率的特征及时间演变规律,指出,60年代以后夏季气温变化的异常程度几乎比以前大了一倍,在冬季,近期在暖背景下的冬季气温变率变小的特征表明长江中下游可能出现持续发暖冬特征,还指出,80年代后我国的长江中下游存季降水处于高基本态与高气候变率时段,应注意频繁发生的夏季洪涝灾害,研究还指出,长江中下游夏季降水与印度季风的气候基本态反相关密切,印度季风及东亚夏季风与长江中下游夏季气温变化在各种尺度上有明显的正相关。  相似文献   

18.
The high variability of the Mediterranean climate from year to year and within each year makes it difficult to assess changes that could be associated with a climate change. In this paper some indices, such as changes in the precipitation concentration during the year, maximum 1-day and 5-day precipitation, number of wet days (total and those with precipitation higher than the 75th and 95th percentile), magnitude and frequency of extreme events (considered as the rainfall higher than that corresponding to the 99th percentile), fraction of annual total precipitation due to events exceeding the 95th and 99th percentile, strength of the events, and length and frequency of dry period (days between consecutive rains) are evaluated for the Penedès-Anoia region (NE Spain). A 80-year daily dataset (1923–2002) and two 40-year series were used to assess possible trends. The indices indicate an increase in precipitation in winter and summer and a positive trend of concentration in autumn, with a higher number of extreme events separated by longer dry periods. The total number of wet days per year increased, although it was irregularly distributed over the year, with an increase in the extremes and in the fraction of total rainfall that these events represent in autumn and winter, and with an increase of the strength of the events in autumn. These changes in rainfall distribution have negative effects on water availability for crops and contribute to accelerate erosion processes in the area.  相似文献   

19.
Shifts in the synoptic systems influencing southwest Western Australia   总被引:1,自引:1,他引:1  
A self-organising map is used to classify the winter circulation affecting southwest Western Australia (SWWA) into 20 different synoptic types. The changes in the frequency of these types and their links to observed rainfall are analysed to further understand the significant, prolonged, rainfall drop observed in this region since 1975. The temporal variability of the different synoptic types link well with the observed rainfall changes. The frequency of the troughs associated with wet conditions across SWWA has declined markedly since 1975 while the frequency of the synoptic types with high pressure over the continent, associated with dry conditions, has increased. Combining the frequency of the synoptic systems with the amount of observed rainfall allows a quantitative analysis of the rainfall decline. The decreased frequency of the troughs associated with very wet conditions accounts for half of the decline. Reductions in the amount of rainfall precipitating from each system also contribute to the decline. Large-scale circulation changes, including increases in the mean sea-level pressure and a decrease in the general baroclinicity of the region have been associated with the rainfall decline. These changes are suggested to be linked to increasing levels of greenhouse gases. Due to the strong link between the number of trough types and the rainfall over SWWA, the shifts in the frequency of these synoptic types could be used as a tool to assess simulated rainfall changes, particularly into the future.  相似文献   

20.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:4,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号