首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
赵鸣 《大气科学》1989,13(3):343-351
本文在边界层顶垂直速度正比于地转涡度和地转风速,并与下垫面粗糙度有关的前提下,研究了边界层抽吸引起的涡度变化,在圆对称气压系统内得到了不同粗糙度情况下的涡度场和气压场的变化速率,修正了经典理论的结果。在湍流交换系数是地转风速及高度的函数的前提下,推导了地形存在时边界层顶垂直速度的公式,并用来讨论地形存在时的旋转减弱问题。  相似文献   

2.
边界层特征参数对边界层顶垂直速度的影响   总被引:1,自引:1,他引:1  
赵鸣 《大气科学》1994,18(4):413-422
本文从正斜压及有层结时的边界层相似理论及阻力定律出发,由边界层顶垂直速度与地面湍应力的关系求出了层结、粗糙度、它们的水平梯度及地转风的水平梯度、斜压性对w的影响的解析式,可用于模式计算。计算结果表明层结影响可使w差1-2个量级,不稳定时粗糙度影响也使w差几倍。除地转涡度决定w外,地转风、层结稳定度和粗糙度及其水平梯度也起了重要作用,还讨论了斜压性的影响。  相似文献   

3.
王华  徐银梓 《气象科学》2002,22(1):16-27
本文在Ekman动量近似下,引入关于水面粗糙度的Charnock公式,求得了斜压大气中海面边界层的风速的解析表达式,进一步得到边界层摩擦偏角的公式,并获得了边界层摩擦偏角的有关结论。例如海面的摩擦偏角远小于陆地的摩擦偏角;低纬的摩擦偏角比高纬的要大:理论分析和个例计算均表明,垂直平流惯性力与水平平流惯性力对摩擦偏角分别起着减小和增大的相反作用,而且反气旋性涡度处与气旋性涡度处的摩擦偏角可相差达20多度。冷暖平流下的摩擦偏角相差很大,甚至可达七、八十度。这些结论对斜压大气中的海面边界层风场摩擦偏角的预后都具有指导性作用。  相似文献   

4.
为量化分析研究湖泊对局地降水强度及性质的影响,基于WRF3.8版本中尺度数值模式及NCEP/NCAR提供的1°×1°时间间隔为6 h的FNL分析资料,进行控制性试验、湖泊陆面化的敏感性试验,对2011年6月14—15日鄱阳湖附近强降水的高值中心开展分析.结果表明:鄱阳湖水体下垫面白天作为"冷源",对其附近100 km的...  相似文献   

5.
重力波折射对广西08年6月连续暴雨的影响   总被引:1,自引:1,他引:0  
利用NCEP再分析资料、T213分析资料和观测资料,探讨重力波折射对2008年6月广西连续暴雨落区的影响.  相似文献   

6.
何建中 《气象学报》1993,51(3):295-303
利用摄动方法,解析求解了含有地形的非线性斜压行星边界层的风场及其顶部的垂直速度。将所得结果与其它工作比较,说明了斜压性、地形和非线性平流对边界层中风场分布和顶部垂直速度的影响。  相似文献   

7.
通过对某山区夏末秋初实测风、温资料的分析,发现山区边界展急流具有明显的特性,其生、消、演变规律与测站所处的地理环境、山丘地形的热力差异,以及适当风向的平流作用等密切相关。特别是测站上空空悬逆温的形成和维持,对边界层急流的形成和维持起关键作用;地形热力差异所引起的局部气层的斜压性可能是边界层急流形成的重要机制之一。  相似文献   

8.
山地边界层急流的观测特性及其成因分析   总被引:6,自引:3,他引:6  
分析浙江上虞丘陵山区边界层风、温实测资料,发现在高压形势下,该地边界层急流具有频发性和显著特征。分析表明,丘陵山区地形热力差异导致的气层斜压性,起因于湍流强度日变化的惯性振荡,以及湍流交换引起的动量下传,是该地边界层急流产生的重要机制;而丘陵山区特有的空悬逆温的发生发展,则是急流得以持续的关键因素。  相似文献   

9.
10.
ENSO事件对冬季北半球太平洋风暴轴维持的影响   总被引:9,自引:3,他引:9  
利用欧洲中期天气预报中心(ECMWF)每日客观分析资料及美国大气研究中心(NCAR)再分析资料研究ENSO事件对简报北半球太平洋风暴轴维持的影响,结果表明,El、Nino(La Nina)年,风暴轴区域斜压性强(弱),风暴轴位置向东(西)扩展(收缩)且强度强(弱),与风暴轴发展有关的涡动热量通量和运量通量也同时增强(减弱),由此揭示出ENSO事件对太平洋风暴轴的维持和发展有重要影响.  相似文献   

11.
We investigate the cumulative added value of assimilating temperature, moisture, and wind observations in the three-dimensional non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model MM5 and use these forecasts to analyze the relationship between surface forcing and planetary boundary-layer (PBL) depth. A data assimilation methodology focused on the surface and the PBL, previously tested in a one-dimensional version of MM5, is applied to 29 May, 6 June, and 7 June 2002 during the International $\hbox {H}_{2}\hbox {O}$ Project over the Southern Great Plains. Model-predicted PBL depth is evaluated against PBL depth diagnosed from data across 4,800 km of airborne lidar data (flight tracks 100–300 km long). The forecast with data assimilation verifies better against observations and is thus used to investigate the environmental conditions that govern PBL depth. The spatial structure in PBL depth is found to be most affected by spatial variations in surface buoyancy flux and capping inversion strength. The spatial scales of surface flux forcing reflected in the PBL depth are found through Fourier analysis and multiresolution decomposition. Correlations are ${<}0.50$ at scales of 64 km or less and increase at larger scales for 29 May and 6 June, but on 7 June low correlations are found at all scales, possibly due to greater within-PBL wind speeds, a stronger capping inversion on this day, and clouds. The results suggest a minimum scale, a function of wind speed, below which heterogeneity in surface buoyancy fluxes is not reflected directly in PBL depth.  相似文献   

12.
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coefficient for the different seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coefficient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (~0.2 m s-1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s-1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s-1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5×10-7N m-3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coefficient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was confirmed via wavelet analysis. In the case of the drag coefficient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coefficient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.  相似文献   

13.
黄翊  彭新东 《大气科学》2017,41(3):533-543
为了提高边界层参数化在我国复杂下垫面上的描述能力,改善边界层能量和物质输送计算和检验其数值模拟效果,本文选取WRF三维模式,采用基于我国不同下垫面上的边界层观测资料改进的新MYNN(Mellor-Yamada-Nakanishi-Niino)参数化方案对2009年3月17日黄海海雾以及2011年12月4日华北地区两次大雾过程进行模拟检验,探讨边界层参数化方案对雾和边界层结构模拟的影响。参照卫星云图和探空资料,边界层内云水混合比垂直积分的水平分布的模拟能力明显提高,反映了改进的MYNN方案能够更好地模拟出两次雾过程的发生、移动和雾区空间分布,更精确的云水混合比和温度的垂直分布能更好地给出雾区的垂直结构和稳定层结,同时可改善雾区低层位温以及比湿垂直分布的模拟。  相似文献   

14.
We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H2O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure.  相似文献   

15.
Field data are analyzed in order to study the layer-averaged winds in the unstable, entraining, baroclinic, advective and non-stationary Planetary Boundary Layer (PBL). The relationship between the actual and geostrophic winds is described using three different equation sets. The results of these analytical expressions are compared with measurements from the Öresund experiment which was carried out during the period May 15 to June 14, 1984.  相似文献   

16.
The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rødsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin—Obukhov theory the measured wind speed increase between 10 m and 50 m height is found to be systematically larger than predicted for stable and near-neutral conditions. The data indicate that the deviation is smaller for short (10–20 km) distances to the coast than for larger (>30 km) distances. The theory of the planetary boundary layer with an inversion lid offers a qualitative explanation for these findings. When warm air is advected over colder water, a capping inversion typically develops. The air below is constantly cooled by the water and gradually develops into a well-mixed layer with near-neutral stratification. Typical examples as well as scatter plots of the data are consistent with this explanation. The deviation of measured and predicted wind speed profiles is shown to be correlated with the estimated height and strength of the inversion layer.  相似文献   

17.
The planetary boundary-layer (PBL) parameterization is a key issue for the definition of initial wind flow fields in diagnostic models. However, PBL theories usually treat separately stable, neutral, and convective stability conditions, so that their implementation in diagnostic wind models is not straightforward. In the present paper, an attempt is made to adopt a comprehensive PBL parameterisation, covering stable/neutral and unstable atmospheric conditions, which appears suitable to diagnostic models. This parameterisation is implemented into our diagnostic mass-consistent code. A validation of the consistency between the implemented PBL parameterisations has been checked through an analysis of the sensitivity of the vertical wind profiles to atmospheric stability.  相似文献   

18.
一次重污染过程及其边界层气象特征量分析   总被引:1,自引:0,他引:1  
针对2013年12月14~25日出现的区域性重污染过程,采用Hysplit后推气团轨迹模式分析了污染形成源,利用污染中心邢台的探空、地面数据计算了大气稳定度、混合层高度、逆温等气象特征量,并对混合层高度、相对湿度、能见度与PM2.5浓度进行了相关分析。结果表明:此次重污染以局地排放为主要形成源,河北省中南部地区大气层结偏稳定,逆温层厚(平均230 m)、强度大(平均2.34℃/100 m)、混合层高度低(平均618 m)是影响污染程度的重要因素;PM2.5浓度与混合层高度呈现负相关(R=-0.80),与能见度呈指数相关(R=-0.77),与相对湿度呈弱的正相关(R=0.62)。  相似文献   

19.
Large-Eddy Simulation Of The Stably Stratified Planetary Boundary Layer   总被引:2,自引:1,他引:2  
In this work, we study the characteristics of a stably stratifiedatmospheric boundary layer using large-eddy simulation (LES).In order to simulate the stable planetary boundary layer, wedeveloped a modified version of the two-part subgrid-scalemodel of Sullivan et al. This improved version of themodel is used to simulate a highly cooled yet fairly windy stableboundary layer with a surface heat flux of(W)o = -0.05 m K s-1and a geostrophic wind speed of Ug = 15 m s-1.Flow visualization and evaluation of the turbulencestatistics from this case reveal the development ofa continuously turbulent boundary layer with small-scalestructures. The stability of the boundary layercoupled with the presence of a strong capping inversionresults in the development of a dominant gravity wave atthe top of the stable boundary layer that appears to be relatedto the most unstable wave predicted by the Taylor–Goldsteinequation. As a result of the decay of turbulence aloft,a strong-low level jet forms above the boundary layer.The time dependent behaviour of the jet is compared with Blackadar'sinertial oscillation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号