首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

2.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

3.
Centaurus B (PKS B1343−601) is one of the brightest and closest radio galaxies, with flux density ∼250 Jy at 408 MHz and redshift 0.01215, but it has not been studied much because of its position (i) close to the Galactic plane (it is also known as G309.6+1.7 and Kes 19) and (ii) in the southern sky. It has recently been suggested as the centre of a highly obscured cluster behind the Galactic plane. We present radio observations made with the Australia Telescope Compact Array and Molonglo Observatory Synthesis Telescope to study the jets and lobes. The total intensity and polarization radio images of the FR I jets are used to determine the jet brightness and width variations, magnetic field structure and fractional polarization. The equipartition pressure calculated along the jets declines rapidly over the first 1 arcmin from the galaxy reaching a constant pressure of 10−13  h −4/7 Pa in the lobes blown in the intracluster medium.  相似文献   

4.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

5.
We present 5-, 8-, and 15-GHz total intensity and polarimetric observations of the radio source PKS 2322−123 taken with the Very Large Array (VLA). This small (11 kpc) source is located at the centre of the cooling-core cluster Abell 2597. The inner X-ray structure, the radio morphology and the steep spectral index  (α=−1.8)  in the lobes all suggest that the radio emission is confined by the ambient X-ray gas. We detect a small region of polarized flux in the southern lobe and are able to calculate a Faraday rotation measure (RM) of 3620 rad m−2 over this region. Based on these observations and Chandra X-ray data, we suggest that the southern lobe has been deflected from its original south-western orientation to the south and into our line of sight. Using the observed rotation measures (RMs) and our calculated electron density profiles, and assuming both a uniform and tangled magnetic field topology, we estimate a lower limit of the line-of-sight cluster magnetic field,   B = 2.1  μG  .  相似文献   

6.
We examine the optical emission-line properties of brightest cluster galaxies (BCGs) selected from two large, homogeneous data sets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (∼15 per cent). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However, we find that, for those BCGs found in cooling flow clusters,  71+9−14  have optical emission. Furthermore, if we consider only BCGs within 50 kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to  100+0−15  per cent. Excluding the cooling flow clusters, only ∼10 per cent of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission-line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.  相似文献   

7.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

8.
We present high-resolution images of the Faraday rotation measure (RM) structure of the radio galaxy PKS 1246−410 at the centre of the Centaurus cluster. Comparison with Hα-line and soft X-ray emission reveals a correspondence between the line-emitting gas, the soft X-ray emitting gas, regions with an excess in the RM images and signs of depolarization. Magnetic field strengths of 25 μG, organized on scales of ∼1 kpc and intermixed with gas at a temperature of 5 × 106 K with a density of ∼0.1 cm−3, can reproduce the observed RM excess, the depolarization and the observed X-ray surface brightness. This hot gas may be in pressure equilibrium with the optical line-emitting gas, but the magnetic field strength of 25 μG associated with the hot gas provides only 10 per cent of the thermal pressure and is therefore insufficient to account for the stability of the line-emitting filaments.  相似文献   

9.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

10.
We investigate the brightest regions of the kpc-scale jet in the powerful radio galaxy 3C 346, using new optical Hubble Space Telescope ( HST ) ACS/F606W polarimetry together with Chandra X-ray data and 14.9 and 22.5 GHz Very Large Array (VLA) radio polarimetry. The jet shows a close correspondence between optical and radio morphology, while the X-ray emission shows a  0.80 ± 0.17 kpc  offset from the optical and radio peak positions. Optical and radio polarimetry show the same apparent magnetic field position angle and fractional polarization at the brightest knot, where the jet undergoes a large kink of almost 70° in the optical and radio images. The apparent field direction here is well aligned with the new jet direction, as predicted by earlier work that suggested the kink was the result of an oblique shock. We have explored models of the polarization from oblique shocks to understand the geometry of the 3C 346 jet, and find that the upstream flow is likely to be highly relativistic  (βu= 0.91+0.05−0.07)  , where the plane of the shock front is inclined at an angle of  η= 51°± 11°  to the upstream flow which is at an angle  θ= 14+8−7  deg to our line of sight. The actual deflection angle of the jet in this case is only 22°.  相似文献   

11.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

12.
We present optical identifications for a sample of 20 previously unknown X-ray/radio sources that are present both in the source catalogue of ROSAT PSPC pointed observations ( ROSAT SRC) and in the NRAO VLA Sky Survey (NVSS). The optical spectroscopy was carried out with the 2.1-m telescope at San Pedro Martir (Mexico) during 1995 April and September. We have identified 15 active galactic nuclei [including 12 broad-emission-line (FWHM >1000 km s−1) objects, one bona fide BL Lac, one BL Lac candidate and one narrow-line (FWHM < 1000 km s−1) radio galaxy] and five radio galaxies. We derive the X-ray fluxes and luminosities by analysing the PSPC exposures, and show the radio morphology from the NVSS maps.  We find that the correlation between the monochromatic X-ray luminosity at 2 keV and the core radio luminosity at 5 GHz for the radio galaxies in our sample follows that found for the 3CR radio galaxies, suggesting a possible nuclear origin for the X-ray emission in these sources. This correlation is weaker in the case of broad-line objects, indicating the presence of another (unbeamed) mechanism for the X-ray emission only weakly related to the radio emission.  相似文献   

13.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

14.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

15.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

16.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

17.
Using radio data at 1.4 GHz from the Australia Telescope Compact Array (ATCA), we identify five head–tail (HT) galaxies in the central region of the Horologium–Reticulum Supercluster (HRS). Physical parameters of the HT galaxies were determined along with substructure in the HRS to probe the relationship between environment and radio properties. Using a density enhancement technique applied to 582 spectroscopic measurements in the  2°× 2°  region about A3125/A3128, we find all five HT galaxies reside in regions of extremely high density (>100 galaxies Mpc−3). In fact, the environments surrounding HT galaxies are statistically denser than those environments surrounding non-HT galaxies and among the densest environments in a cluster. Additionally, the HT galaxies are found in regions of enhanced X-ray emission and we show that the enhanced density continues out to substructure groups of 10 members. We propose that it is the high densities that allow ram pressure to bend the HT galaxies as opposed to previously proposed mechanisms relying on exceptionally high peculiar velocities.  相似文献   

18.
Using a deep Chandra observation of the Perseus cluster of galaxies, we find a high-abundance shell 250 arcsec (93 kpc) from the central nucleus. This ridge lies at the edge of the Perseus radio mini-halo. In addition we identify two Hα filaments pointing towards this shell. We hypothesize that this ridge is the edge of a fossil radio bubble, formed by entrained enriched material lifted from the core of the cluster. There is a temperature jump outside the shell, but the pressure is continuous indicating a cold front. A non-thermal component is mapped over the core of the cluster with a morphology similar to the mini-halo. Its total luminosity is  4.8 × 1043 erg s−1  , extending in radius to ∼75 kpc. Assuming the non-thermal emission to be the result of inverse Compton scattering of the cosmic microwave background and infrared emission from NGC 1275, we map the magnetic field over the core of the cluster.  相似文献   

19.
We present a photometric far-ultraviolet (FUV) to K s-band study of the field around quasar SDSS J092712.65+294344.0. The SDSS spectrum of this object shows various emission lines with two distinct redshifts, at   z = 0.699  and 0.712. Because of this peculiar spectroscopic feature, this source has been proposed as a candidate recoiling or binary black hole. A third alternative model involves two galaxies moving in the centre of a rich galaxy cluster. Here, we present a study addressing the possible presence of such a rich cluster of galaxies in the SDSS J092712.65+294344.0 field. We observed the  3.6 × 2.6  arcmin2 field in the K s band and matched the near-infrared data with the FUV and near-ultraviolet images in the Galaxy Evolution Explorer archive and the ugriz observations in the SDSS. From various colour–colour diagrams, we were able to classify the nature of 32 sources, only 6–11 of which have colours consistent with galaxies at   z ≈ 0.7  . We compare these numbers with the surface density of galaxies, stars and quasars and the expectations for typical galaxy clusters both at low and high redshift. Our study shows that the galaxy cluster scenario is in clear disagreement with the new observations.  相似文献   

20.
We present Chandra , Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246−410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analysing the new X-ray data, we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low,  <1040 erg s−1  . We estimate the Bondi accretion radius to be 30 pc and the accretion rate to be  0.01 M yr−1  , which under the canonical radiative efficiency of 10 per cent would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 pc in position angle −150°. This jet is deflected on the kiloparsec-scale to a more east–west orientation (position angle of −80°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号