共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
人工神经网络具有较强的非线性映射能力。本文介绍了神经网络BP算法的一些改进措施。这些措施可以提高BP算法的学习收敛速度,同时也可以提高BP网络性能的稳定性。为避免软土路基沉降传统计算方法中各种人为因素的干扰,本方法利用实测资料直接建模。基于改进的BP神经网络模型,建立了可依据现场量测信息对软基路堤沉降量随时间而发展的过程进行动态预报的分析方法。本文所建立的BP算法模型比较独特,利用该模型预测软土路基沉降精度高,预测结果的稳定性好。 相似文献
3.
在短期基坑沉降监测中,由于数据量少且呈非线性变化,沉降模型很难准确建立。灰色GM(1,1)对数据少、趋势性强、波动小的数据有较高的预测精度,但不能模拟复杂的非线性函数;BP神经网络可以对非线性数据进行学习训练,具有自学习、自适应能力;通过将GM(1,1)与BP神经网络组合,并优化网络部分的学习率、权值和阈值等,建立一种改进的灰色神经网络模型,该模型具有对非线性数据自学习、自适应能力和预测精度更高等优点。通过某基坑沉降监测分析,验证改进的灰色神经网络模型预测精度更高,适合短期建模,具有很好的实用性。 相似文献
4.
随着我国经济建设的不断发展,多层建筑物已经被高层和超高层建筑所替代。高层建筑物对单元地面所产生的压力骤然增加,建筑物自身所存在的荷载相应增加。本文主要利用数字水准仪对高层建筑H楼进行沉降观测,设置15个周期,主体施工阶段每2层观测一期数据,封顶之后观测了5期数据。取3个点作为实验分析数据,得出了沉降变化曲线。利用BP神经网络、改进BP神经网络,对沉降数据进行预测,取期间的沉降数据和期间累计沉降数据作为训练样本,根据两个沉降数据预测值的大小,选择合适的训练样本,提高预测精度。 相似文献
5.
6.
7.
为提高建筑物沉降变形预测精度,准确掌握建筑物变形趋势,发挥局部均值分解(LMD)算法与Elman神经网络模型在数据处理、数据预测中的优势,提出一种新的LMD-Elman神经网络模型。该组合预测模型有效实现建筑物沉降预测的流程为:(1)通过LMD方法将沉降序列分解为若干的不同尺度具有物理意义的乘积函数;(2)发挥Elman神经网络模型在数据预测中的优势,针对不同分量建立预测模型得到各分量预测值;(3)将各分量预测值重构得到最终预测结果。将组合预测模型应用于实测建筑物沉降数据预测中,结果表明,相较于GM(1.1)模型与单一的Elman神经网络模型,本文提出组合预测模型预测结果与实际监测值具有较高的一致性,预测精度更高。该组合预测模型能够充分发掘建筑物沉降数据本身所蕴含的物理机制与物理规律,提高了建筑物沉降变形的预测精度。 相似文献
8.
李淑瑶 《测绘与空间地理信息》2018,(2):183-185,189
深基坑测量在较短周期内获得的观测数据所建立的预测模型,往往不能有效地体现出深基坑非线性变形的特点。通过对深基坑实测,本文提出先使用三次样条插值法,对原始观测数据做预处理,以凸显数据的非线性特点,再使用三次指数平滑法建立串联式组合预测模型,并对沉降趋势做预测。结果表明,这种串联式组合预测模型适用于基坑沉降变形的非线性特点,相比单一的指数平滑法建立的预测模型,提高了初值拟合精度,使预测精度更高。 相似文献
9.
通过分析建筑物沉降监测数据的特点,采用了指数平滑和曲线拟合模型对建筑物沉降监测数据进行处理,实现了两种数据处理模型的建模过程,并用于建筑物沉降量的实际预测,验证了模型的可行性。 相似文献
10.
结合某大坝工程实测数据,建立该大坝位移量和相关因子的逐步回归模型和神经网络模型,并对两者模型结果进行比较,结果表明神经网络方法在大坝变形分析和预报方面效果良好。 相似文献
11.
12.
13.
为了使大坝变形的预测精度更高,针对大坝形变量的时间序列中存在着非平稳和非线性等曲线特性,使用一种经验模态分解(EMD)和非线性自回归动态神经网络(NAR)相结合的EMD-NAR模型对大坝形变时间序列进行预测。以某大坝实测的时间序列数据为算例,分别使用BP模型、NAR模型和EMD-NAR模型进行实验对比,结果表明,BP、NAR、EMD-NAR模型预测的均方根误差(RMSE)分别为0.9449,0.6993,0.4678;模型预测的平均相对误差(MRE)分别为0.1492,0.1065和0.0688,从三种模型预测结果对比可知,组合的EMD-NAR模型预测精度最高且稳定性最好,为时间序列的大坝形变预测提供一种新的参考思路。 相似文献
14.
改进灰色马尔科夫模型在基坑预测中的研究 总被引:1,自引:0,他引:1
基坑预测问题关系到工程施工的安全,在施工过程中对基坑进行周密的监测和变性预测分析显得尤为重要。针对传统预测模型存在固有偏差和可靠性低的缺点,采用新陈代谢的原理对无偏灰色加权马尔科夫模型进行改进。该模型先用无偏灰色模型拟合系统的总体变化趋势,然后,对拟合残差进行马尔可夫状态划分,并根据各阶权重对不同步长的转移矩阵进行加权处理,用加权后的无偏灰色马尔科夫模型进行预测。在每一步的预测中,利用新陈代谢的原理不断更新建模所使用的数据。将该模型用于基坑沉降预测,并通过实例进行验证。实验表明:基于新陈代谢的无偏灰色加权马尔科夫模型提高了基坑沉降预测的精度和可靠性,预测精度与未改进模型相比提高了8.54%。 相似文献
15.
提出了一种基于指数平滑法的GPS卫星钟差预报方法。该方法可采用少量数据建模,且计算过程简单、方便,尤其是在缺少相关历史数据或数据变化趋势不明显、不稳定的情况下,用该方法仍可取得较好的效果。通过与GPS卫星钟差预报中常用的二次多项式模型和灰色预测模型的对比分析,结果表明:指数平滑法适用于GPS卫星钟差的中、短期预报,其预报精度可达ns级;在利用小数据量建模的情况下,其预报效果优于二次多项式模型,与灰色模型的预报效果基本相当;该方法还可用于GPS卫星钟差的长期预报,其预报精度可达μs级,与灰色预测模型的精度相当。 相似文献
16.
电离层总电子含量TEC(Total Electron Content)是电离层的一个重要特征参数。对TEC的预报也已经成为电离层研究的一个热点。根据JS CORS中心提供的GPS观测数据,建立了区域实时多站多项式模型;并分别以模型计算得到的南京地区的电离层电子含量数据和苏州地区的电离层电子含量数据为样本,采用时间序列和BP神经网络融合模型进行了预报。结果表明,采用融合模型在短期预报中能够取得较好的效果,精度比时间序列模型提高20%左右。 相似文献
17.
利用IGS(International GNSS Service)中心提供的中、低纬度地区平静期、活跃期观测数据,通过Klobuchar模型与双频观测模型解算电离层总电子含量(total electron content,TEC)值。采用Holt指数平滑模型对每个历元前6 d两种模型差值进行1 d预测,利用预测所得差值对Klobuchar模型第7 d的TEC值进行改进。实验结果表明,无论在电离层活跃期还是平静期,改进模型改正效果比基本模型有显著提升,改进模型能更好地反映电离层变化特性,尤其是夜间电离层变化特性。 相似文献
18.
地震预测是一个世界性科学难题,特别是短期与临震预测的水平与社会需求相距甚远。论文在详细分析研究地震数据特征以及常规地震预测方法的基础上,提出了一种可以实现地震震级量化预测的新方法,此方法通过解算出地震参数和天文时变参数并建立地震预测模型,对未来预测周期内发生的最大地震震级进行量化预测。本文以实验区域为研究对象并选取6个月为预测周期,采用线性回归分析方法和常规BP神经网络方法进行研究。经回溯检验,其地震震级预测中误差分别为±0.78级和±0.61级,精度均有待提高。经过总结上述两种方法的优缺点,创新的提出了基于线性回归与神经网络技术的地震预测融合模型,回溯检验结果表明,融合模型的震级预测中误差为±0.41级,地震预测效果显著提高。 相似文献