首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
汶川地震诱发罐滩滑坡形成机制初步分析   总被引:4,自引:1,他引:3  
安县罐滩滑坡由汶川地震诱发形成,发育于存在软弱基座的反倾斜坡中,体积达468×104m3。罐滩滑坡由"5.12"汶川地震及当晚暴雨诱发形成,发生时间滞后地震8 h,是典型的地震后效型滑坡。滑坡位于龙门山前山断裂带上盘,自然斜坡走向与断裂带近平行,水平距离约400 m,前山断裂带的分支断裂从坡体下部通过,并形成底部泥岩和上部白云岩的分界线。调查和分析表明,下软上硬的坡体结构是滑坡产生的基础,强烈的地质构造活动背景是其产生的重要条件,强烈的地面震动和高强度暴雨是导致产生滑坡的根本因素。滑坡的形成机制和发展过程可以分为以下3个阶段:自然斜坡的压缩-倾倒变形、震后滑面贯通阶段、滑坡整体破坏阶段。滑坡体形成沿河长400 m,纵向长880 m,平面面积1.82×105m2的滑坡堆积体,堵塞雎水河形成罐滩堰塞湖。  相似文献   

2.
罐滩滑坡是“5·12”地震诱发的典型反倾软弱基座滑坡,滑坡在地震过程中并末立即滑移,而是在震后余震和降雨共同作用下产生的.为研究滑坡中下部软基在地震过程中对滑坡稳定性的影响,本文以罐滩滑坡的地质结构为背景,建立了有无软弱基座2种结构斜坡的概化模型,通过数值计算揭示了斜坡在地震动力响应过程中的应力演化过程及其破裂的产生和...  相似文献   

3.
The Daguangbao landslide is the largest co-seismic landslide triggered by the Wenchuan earthquake (Ms 8.0) occurred on 12 May 2008. The landslide, which is 4.6 km long and 3.7 km wide, involves a volume of approximately 1.2 × 109 m3. An exposed slip surface, situated at the southern flank of its source area, was observed with a length of 1.8 km along the main sliding direction and an area of 0.3 km2. To study the geological and tectonic characteristics of the source area and their contributions to the landslide formation during the earthquake, detailed geological investigations were firstly conducted. And it is reached that the landslide occurred on the northwestern limb of the Dashuizha anticline with its scarp showing several geological structures, including joint sets, local faults, and folds. These tectonic-related structures potentially influenced the failure of the landslide. Secondly, further investigations were focused on the inclined planar sliding surface using 12 exploratory trenches, nine boreholes, a tunnel, borehole sonic data, and micro-images. These data reveal that the rock mass along the sliding surface was the fragmented rock of a bedding fault. A pulverized zone was observed on the sliding surface, which was the zone of shear localization during the landslide. This suggests that the shear failure of the Daguangbao landslide developed within the bedding fault. The rapid failure of the landslide was associated with the degradation of the rock mass strength of the bedding fault both before and during the 2008 Wenchuan earthquake. With this study, we propose that a pre-existing large discontinuity within a slope may be the basis for initiating a large landslide during earthquake.  相似文献   

4.
以鲁甸地震诱发的红石岩崩塌滑坡为研究对象,通过大型振动台模型试验和3DEC数值模拟,研究了含软弱岩层的反倾岩质边坡的动力响应和破坏失稳模式.研究结果表明:水平加载下,随频率增大PGA放大系数先减小后增大,在接近坡体自振频率8Hz的波形加载下,坡体动力响应最为剧烈,软弱岩层对不同频率的横波具有放大和吸收作用,对5~10Hz的横波放大效应明显,对15~20Hz的横波则明显吸收;竖向加载下,随加载正弦波频率的增加,PGA放大系数先增大,25Hz时PGA放大系数减小,随后又继续增大,在频率为30Hz时PGA放大系数达到最大,在5~30Hz范围内软弱岩层对纵波均具有一定的放大效果;双向加载下,坡体水平和竖向PGA放大系数分布与单向加载一致,但双向加载下坡体部分位置动力响应加剧,部分位置动力响应则受到抑制.含软弱岩层的反倾岩质边坡破坏过程可以分为6个阶段:坡体内部轻微损伤-软岩挤出、软硬岩交界上方硬岩拉裂-硬岩裂纹向上延展-软弱岩层挤压滑动-层面和纵向节理贯通形成滑面-边坡破坏.在软弱岩层的反倾岩质边坡中,软弱岩层具有对地震波的放大吸收、折射反射作用,影响着边坡的动力响应特征,软弱岩层的挤出破坏导致上部岩体岩结构面松动开裂,是该类岩质边坡破坏发展的主要原因,对该类边坡需应注意对软弱岩层进行加固防护,减小边坡的动力破坏.   相似文献   

5.
The Niumiangou landslide (~7.5 × 106 m3) was the largest that occurred in the town of Yingxiu (the epicentral area) during the 2008 Wenchuan earthquake. This landslide originated on a steep slope (~30°) that was located directly above the rupture surface of the responsible fault and then traveled ~2 km after flowing down the axes of two gently sloping (<12°) valleys. Evidence at the site indicates that the landslide materials were highly fluidized and underwent rapid movement. To examine the initiation and movement mechanisms of this landslide, we performed a detailed field survey, conducted laboratory tests on samples taken from the field, and analyzed the seismic motion. We conclude that the landside materials were displaced due to seismic loading during the earthquake and that liquefaction may have been triggered in saturated layers above the sliding surface with progressive downslope sliding, which resulted in the high mobility of the displaced materials. The liquefaction of colluvial deposits along the travel path due to loading by the sliding mass enhanced the mobility of the displaced mass originating in the source area. Using an energy-based approach, we estimated the dissipated energy in our cyclic loading test and the possible energy dissipated to the soil layer on the slope by the earthquake. We infer that the seismic energy available for the initiation of the slope failure in the source area may have greatly exceeded the amount required for the initiation of the liquefaction failure. The slope instability might have been triggered several seconds after the arrival of seismic motion.  相似文献   

6.
During the 2008 Wenchuan earthquake, the river valley from Yingxiu to Wenchuan experienced numerous landslides and became a prominent area of landslide complexes. The present large landslide complex near the earthquake epicenter consisted of Laohuzui slide 1, Laohuzui slide 2 and Douyaping slide. The scale, geology, morphology, sliding process, and failure mechanism of the landslide complex are analyzed by means of field investigation, aerial photograph and stereographic projection technique. Characteristics of these three slides including seismic response of slope, landslide debris, damage and potential failure are discussed: the convex slope and the upslope of fractured granitic rock at high altitude are highly prone to landsliding under earthquake; the high source altitude and long travel path determine grain sizes and the deposit angle of the slide debris; the landslide complex completely buries the G213 roadway and dams up the Minjiang River in these sections; after the earthquake, rainfall, aftershocks and river erosion may retrigger new failures, such as retrogressive slide of weathered fractured rock, colluvial landslide, debris flow, embankment failure and rockfall. The following are presented as suggested remedial measures to protect the roadway and stabilize the slope: the removing and trenching, protective concrete/rock blocks against erosion, retaining structure, rockfall stopping wall, rockfall restraining net, rock bolt, and the planting of vegetation.  相似文献   

7.
This paper uses the catastrophic rockslide at Sanxicun village in Dujianyan city as an example to investigate the formation mechanism of a rapid and long run-out rockslide-debris flow of fractured/cracked slope, under the application of a rare heavy rainfall in July 2013. The slope site could be affected by the Wenchuan Ms 8.0 Earthquake in 2008. The sliding involved the thick fractured and layered rockmass with a gentle dip plane at Sanxicun. It had the following formation process: (1) toppling due to shear failure at a high-level position, (2) shoveling the accumulative layer below, (3) forming of debris flow of the highly weathered bottom rockmass, and (4) flooding downward along valley. The debris flow destroyed 11 houses and killed 166 people. The run-out distance was about 1200 m, and the accumulative volume was 1.9?×?106 m3. The rockslide can be divided into sliding source, shear-shoveling, and flow accumulative regions. The stability of this fractured rock slope and the sliding processes are discussed at four stages of cracking, creeping, separating, and residual accumulating, under the applications of hydrostatic pressure and uplift pressure. This research also investigates the safety factors under different situations. The double rheological model (F-V model) of the DAN-W software is utilized to simulate the kinematic and dynamic processes of the shear-shoveling region and debris flow. After the shear failure occurred at a high-level position of rock, the rockslide moved for approximately 47 s downward along the valley with a maximum velocity of 35 m/s. This is a typical rapid and long run-out rockslide. Finally, this paper concludes that the identification of the potential geological hazards at the Wenchuan mountain area is crucial to prevent catastrophic rockslide triggered by heavy rainfall. The identified geological hazards should be properly considered in the town planning of the reconstruction works.  相似文献   

8.
岩性及岩体结构对斜坡地震加速度响应的影响   总被引:1,自引:0,他引:1  
刘汉香  许强  侯红娟 《岩土力学》2013,34(9):2482-2488
斜坡岩体的岩性及岩体结构是斜坡在地震作用下产生变形破坏的主要控制因素。基于振动台模型试验,对4个斜坡模型探讨了这2个因素对斜坡地震动力响应的影响。岩性包括强度相对较高的硬岩和强度相对较低的软岩,对这两种岩性的斜坡又分别考虑了不含结构面的均质斜坡和含水平层状结构面的斜坡。基于传感器采集到的大量数据,以主频相近的天然地震波和10 Hz正弦波加载为分析工况,获得了以下几点认识:(1)4个模型斜坡坡面和坡内的水平向加速度均具有高程放大效应,尤其是软岩斜坡坡顶放大效应最显著;(2)软岩斜坡对水平向加速度的高程放大效应强于硬岩斜坡,尤其是在均质斜坡中表现最显著,均质软岩斜坡的高程放大效应呈现出明显的非线性特征;(3)当加载方向与水平层面平行时,含水平层状结构面的斜坡比均质斜坡产生了更强的高程放大效应,且在软岩斜坡中体现最显著;(4)岩性差异对斜坡水平向加速度高程效应的影响比结构差异的影响更为显著。研究结果为岩质斜坡的抗震设计提供了一定参考。  相似文献   

9.
The Jinlong village landslide is located in Zitong County, Sichuan and approximately 150 km east of Wenchuan. The landslide has exhibited creep deformation for nearly 30 years. Field investigations indicated that the slope deformation was caused by the combined effects of unfavorable topographic and geological conditions and earthquakes. The sliding surface is along a contact between silty clay and mudstone. The Wenchuan earthquake accelerated the creep, causing bulging of the ground surface. Shear test results of the silty clay near the sliding surface indicated that the residual strength is consistent with the stability state of the landslide. The factors of safety were calculated using the limit equilibrium method (LEM) and the method of fast Lagrangian analysis of continua in two dimensions. The results using the LEM indicate that the stability is clearly affected by seismic shaking, and when the peak ground acceleration is 0.08g, the slope reaches the limit state. The shear failure surface given by numerical simulation develops on the contact between the clay and silty mudstone, which confirmed the assumed sliding surfaces’ location using the LEM.  相似文献   

10.
To investigate the formation mechanism and the stability of Wanjia middle school slope in Wenchuan Earthquake Area, the macroscopic geological characteristics and the failure process of the landslide are researched by engineering geology analysis method, limit equilibrium method, and finit element method. The results show that after the Wenchuan Earthquake, retaining walls, houses and other infrastructure on the foot of Wanjia middle school slope were severely destroyed, 10 cm wide tension fracture appeared at the trailing edge of the slope. Wanjia middle school slope is a type of medium-sized soil landslide. The area of the deformation body is about 19,314 m2, the total volume of the deformation body is about 23 × 104 m3. There may be two potential sliding surfaces in the unstable slope: shallow and deep landslide. The analysis results of the limit equilibrium method and the finite element method show that: under dead weight, dead weight + rainstorm, dead weight + earthquake conditions, the plastic zone occurs mainly at the middle part or the trailing edge of the slope, and it doesn’t fully cut through the deep landslide body, so the deep landslide is stable. However, under rainstorm or earthquake conditions, the plastic zone almost completely cut thorough the shallow landslide body, it shows that the shallow landslide is in the understable–basic stable state. It is found that the results of finite element method is concordant with the results of the limit equilibrium method (F s = 1.06–1.29, the shallow landslide is in the basic stable–stable state). The calculation results show that shallow landslides are likely to occur in Wanjia middle school slope during a rainstorm or an earthquake, so monitoring and control of the slope should be strengthened. The shallow landslide should be managed by some measures, such as anti slide pile retaining structures and drainage works, and the dangerous rock bodies on the slope surface should be cleaned up.  相似文献   

11.
反倾软硬互层岩体边坡地震响应的数值模拟研究   总被引:2,自引:2,他引:2       下载免费PDF全文
反倾软硬岩体互层边坡是公路建设中经常遇到的一类边坡,在不利条件下有失稳破坏的可能,特别是在坡脚受到扰动、降雨、地震等作用时.以“5.12”地震期间都汶公路(都江堰—汶川)上一处边坡的地震响应为例,采用离散元UDEC软件对其进行模拟,系统研究了其地震响应的变形破坏机制.研究结果表明,地震作用下,软弱岩层挤压变形强烈,有向外剪出的趋势.同时,在地震波反复拉张作用下,软弱岩层位置容易开裂,成为坡体变形破坏的优势拉裂区域.地震波加速度、速度随高程变化放大显著,在坡体表部位移最随高程增高而逐渐增大.就整体而言,岩体内部的节理裂隙进一步张开,井产生了一些新的裂隙,弯曲倾倒有加剧的趋势;而坡表覆盖层普遍具有表部拉张开裂和掉块现象,特别是在地形几何形态突变处,破坏更为显著.  相似文献   

12.
缓倾软硬岩互层边坡变形破坏机制模型试验研究   总被引:1,自引:0,他引:1  
以宜巴高速公路沿途彭家湾软硬岩互层边坡为工程依托,依据地质分析及相似理论建立缓倾软硬岩互层边坡室内模型,采用开挖试验及和注水软化试验来模拟实际中的工程开挖(或河谷下切)和雨水浸润软化过程,研究缓倾软硬岩互层边坡的变形破坏机制。结果表明:在开挖及雨水软化两种工况下,该类软硬岩互层边坡的变形模式都是前期的滑移拉裂变形和后期的整体蠕滑变形,破坏模式是以深部软层为滑动面的整体滑移;硬岩层与软岩层的变形情况略有不同,硬岩层以整体蠕滑变形为主,而软岩层以滑移拉裂变形为主;深部软岩层的状态变化对边坡的整体稳定性影响非常关键;工程开挖(河谷下切)及雨水入渗都会对该类缓倾软硬岩互层边坡的稳定性有重要影响,开挖导致的临空面及微裂隙是滑坡发生的基础,水是滑坡发生的条件和诱因。  相似文献   

13.
The Qianjiangping landslide is a large planar rock slide which occurred in July 14, 2003 shortly after the water level reached 135 m in the Three Gorges Reservoir, China. The landslide destroyed 4 factories and 129 houses, took 24 lives, and made 1,200 people homeless. Field investigation shows that the contributing factors for the landslide are the geological structure of the slope, the previous surface of rupture, the water level rise, and continuous rainfall. In order to reveal the mechanism and failure process of the landslide, numerical simulation was conducted on Qianjiangping slope before sliding. Based on the characteristics and the engineering conditions of the landslide, the topography and the geological profiles of Qianjiangping slope before sliding is reconstructed. The seepage field of Qianjiangping slope before sliding was simulated with the Geostudio software. The results show that ground water table rises and bends to the slope during the rise of water level, and the slope surface becomes partially saturated within the period of continuous rainfall. Using the ground water table obtained above, the failure process of Qianjiangping slope is simulated with the Flac3D software. The results demonstrate that the shear strain increment, displacement, and shear failure area of the slope increased greatly after the water level rose and continuous rained, and the landslide was triggered by the combined effect both of water level rise and continuous rainfall. The development of shear strain increment, displacement, and shear failure area of the slope shows that the landslide was retrogressive in the lower part of the slope and progressive in the upper part of the slope.  相似文献   

14.
This study proposes a calculation method for regional earthquake-induced landslide susceptibility that applies the permanent seismic displacement calculated using Newmark’s sliding block analysis with estimated vertical and horizontal seismic motions. The proposed method takes into account the direction of slope failure based on the specified slope azimuth. The study results reveal the importance of predominant slope failure direction using a simple infinite slope model subjected to earthquakes. The target area for the earthquake-induced landslide susceptibility analysis constituted a region of more than 2000 km2 surrounding the epicenter of the Mid Niigata prefecture earthquake in 2004. An earthquake-induced landslide susceptibility map was created based on the proposed method with a specific combination of friction angle and cohesion, and the resulting data were compared to the landslide inventory map produced from aerial photographs following the Mid Niigata prefecture earthquake in 2004. To create the susceptibility map, geomaterial cohesion values for the slope were back-calculated to satisfy the minimum safety factor in the static state. This study also proposes a calculation method for the prediction rate and determines the back-calculated strength parameters of geomaterials. The proposed regional landslide susceptibility map will be useful for understanding potential slope failure locations and magnitude of damage, as well as for planning field investigation and preventing secondary disasters immediately after earthquakes.  相似文献   

15.
刘家湾滑坡位于青川东河口红光乡刘家湾,为汶川地震触发的特大型岩质山体滑坡。野外调查结果表明,该滑坡堆积体与一般汶川地震滑坡运动堆积体迥异的是滑体在沿碳质板岩与白云岩划分带破坏溃滑后,滑源区又沿白云岩风化卸荷带触发了二次溃滑,形成二级堆积平台的形态且以不同岩性区分,在岩性划分带及风化卸荷带呈现出明显的动力破坏特性。通过对该滑坡堆积体进行岩体物理力学试验及波速测试研究表明,该滑坡由白云岩、碳质板岩及千枚岩组成的内硬外软岩质边坡具有明显的量化差异特性,强震条件下差异岩性组合边坡岩层接触面的动力突变效应耦合凸出地形是导致该边坡破坏的主要因素。近一步研究显示该滑坡运动可大致分山体震裂阶段、地质分界面应力突变阶段、高速溃滑阶段、碎屑流堆积阶段、二次溃滑堆积5个动力过程。  相似文献   

16.
A high steep rock hill with two-side slopes near National Road 213 is used as a prototype in this paper. The full process from initial deformation to sliding of the slope during ground shaking is simulated by a new discrete element method—continuum-based discrete element method. Then, the seismic responses of a high steep rock hill with two-side slopes are researched from the base of time, frequency and joint time–frequency domain using Hilbert–Huang transform and Fourier Transform. The findings are: first, the stress concentration phenomenon occurs at the top of the sliding mass, and then some tension and shear failure points appear, which expand from the top toward the toe of the sliding mass along the structural plane. At the same time, the number of tension failure points gradually increases. Then the toe of the sliding mass fails, and shears out from its toe which results in the landslide. If the material parameters are under the same conditions, the landslide in the middle of the slope occurs before that at the foot of slope, and the starting time of landslide and the arrival time of the peak ground acceleration are synchronous or the former slightly lags behind the latter. The difference of distribution and dissipation of earthquake energy in the sliding body and sliding bed is the major influence factor to induce the landslide. When the accelerations are small, the instantaneous frequency of accelerations between sliding bed and sliding body is generally consistent, the energy transmittance coefficients of the sliding structural plane and the controlled frequency band of the energy all range in a limitation; with the increase of the seismic intensity, the instantaneous frequency and the energy transmittance coefficients gradually decrease, and then they are steady within the lower limitation. At the same time, the controlled frequency band also shifts gradually from high frequency band to the lower one. Based on the input seismic wave, the peak acceleration amplifies as the increase of elevation, regardless of the monitoring points on the steep slope, gentle slope side or inside of the slope. Generally speaking, amplification of the vertical peak acceleration is stronger than that of the horizontal peak acceleration, and amplification of the peak acceleration on a steep slope is stronger than that on a gentle slope, and that of inside of the slope is the weakest amplification.  相似文献   

17.
Sun  Shu-wei  Pang  Bo  Hu  Jia-bing  Yang  Zhao-xi  Zhong  Xiao-yu 《Landslides》2021,18(7):2593-2607

Owing to the heavy rainfall, a landslide occurred at the Anqian Iron mine, at 18:00(UTC + 8) on November 24, 2019, in China. The landslide was about 3.0?×?104 m3 and caused damage to the road of transporting waste materials. Failure characteristics and the mechanism of this landslide were analyzed in this study. The landslide area was divided into three parts: the rear tension cracking area, the middle sliding deformation area, and the front colluvium area. A contact-free measuring technique using the new ShapeMetrix3D system was applied and 204 joints were analyzed based on equal-angle stereographic projection. Thus, a conceptual model of the mechanism of the landslide was constructed and the formation process of the landslide was divided into three stages: the first shearing and dislocation stage; the second sliding, front bulging, and rear tractive cracking stage; and the third local rock mass collapse and colluvium depositing stage. Numerical modeling was performed to discover the landslide mechanism by progressively reducing the shear strength of rock mass. The results showed that the original slope was stable, whereas heavy rainfall triggered the landslide, and the predicted failure surface matched closely the field investigations. The factor of safety obtained by real three-dimensional analyses was slightly higher than that obtained by plane problem analyses, and the difference was attributed to the three-dimensional effect of the landslide. This paper also presents the results obtained from the parametric analysis in order to understand the impact of shear strength parameters on the overall stability of the slope.

  相似文献   

18.
The 2008 Wenchuan earthquake with Ms8.0 triggered extensive throwing-pattern landslides in the area within or near the seismic faults. The resultant landslides from this earthquake brought to the fore the effect of vertical earthquake acceleration on landslide occurrence. The pseudostatic analysis and the dynamic response on landslide stability due to the Wenchuan earthquake are studied with the Chengxi (West Town) catastrophic landslide used as a case study. The results show that the epicenter distance is an important factor which affects the vertical acceleration and thus the stability of landslide. Also, the vertical acceleration was found to have a significant impact on the FOS of landslide if the earthquake magnitude is quite large. Within the seismic fault, the amplitude effect of vertical acceleration is very dominant with the FOS of landslide, for vertical acceleration ranging from positive to negative, having a variation of 25 %. The variation of FOS of landslide for vertical acceleration ranging from positive to negative are 15 and 5 % for landslides near seismic fault and outside seismic fault, respectively. For landslide with a slope angle <45°, the FOS of landslide with both horizontal and vertical accelerations is significantly greater than the one without vertical acceleration. Further, the results computed from both the pseudostatic method and dynamic analysis reveal that the FOS during the earthquake varied significantly whether vertical acceleration is considered or not. The results from this study explain why lots of throwing-pattern catastrophic landslides occurred within 10 km of the seismic fault in the Wenchuan earthquake.  相似文献   

19.
根据工程地质测绘及勘探成果资料,在对四川汶川县索桥滑坡产生的成因机理和破坏模式进行分析判断的基础上,对两个潜在滑移面在不同的工况下的稳定性进行了分析评价,确定岩土交界面为最危险滑面.在此前提下对边坡发展趋势及激发诱因进行科学预测,认为在暴雨或余震等诱发下边坡极有可能失稳,并有针对性的制定了应急防治与永久根治的综合治理方案.  相似文献   

20.
On August 27, 2014, a large-scale landslide occurred in Fuquan, Guizhou, China. This high-speed landslide caused considerable destruction; 23 people were killed, 22 were injured, and 77 houses were damaged. Field investigations, deformation monitoring, and numerical analyses have been performed to examine the characteristics and formation processes of this landslide. In the Xiaoba area, the slope showed a two-layered structure with a hard upper layer and a soft lower layer. Dolomite of the Dengying Formation in the slope front formed a locked segment controlling slope stability. Based on deformation and failure characteristics, the landslide is divided into sliding source area A and accumulation area B. The landslide is also divided into the following stages: bedding slip, tension cracking at the slope scarp, and the appearance of the locked section at the slope toe. Numerical calculations show that excavation led to maximum shear strain concentration along the interface of siltstone and slate in the middle of the slope, which became a potential sliding surface. Stress concentration and distribution of the plastic zone of the locked segment of the Dengying Formation dolomite occurred in the slope toe. Continuous rainfall caused the groundwater level to rise in the Xiaoba slope. The unfavorable geological structure was a determinant factor, and the combined effects of excavation and continuous rainfall were triggering factors that induced the landslide. The geomechanical mode for the Xiaoba landslide is sliding tension–shear failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号