首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   

2.
Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990–1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. The difference between radio-echo sounding depth and measured drilling depth was about 4 m. Annual ablation (including snow, firn, and ice) measured for the 1990–1991 period averaged about 0.93 m/a. Densification proceeds rapidly on Upper Fremont Glacier. Measured densities in the near-surface parts of the glacier ranged from 4.4 x 105 g/m3 at the surface to larger than 8.5 x 105 g/m3 at depths exceeding 14 m. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. The yearly mean air temperature of the study site during the period from July 11, 1990 to July 10, 1991 was -6.9°. Borehole temperatures from 10-m depths are 0 ± 0.4°. The warmer borehole temperatures relative to the yearly mean air temperature may be caused by the latent heat of freezing, as meltwater from the surface percolates into the glacier and refreezes. [Key words: glaciers, Wyoming, Wind River Range, ice thickness, ablation rates.]  相似文献   

3.
TemperaturedistributionofCollinsIceCap,KingGeorgeIsland,AntarcticaHanJiankang(韩建康)andJinHuijiun(金会军)(LanzhouInstituteofGlacio...  相似文献   

4.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

5.
Ice surface topography of a late Pleistocene glacier complex, herein named the Taylor River Glacier Complex (TRGC), was reconstructed on the basis of detailed mapping of glacial landforms combined with analyses of aerial photos and topographic maps. During the last glacial maximum (LGM), the TRGC covered an area of 215 km2 and consisted of five valley or outlet glaciers that were nourished by accumulation in cirques basins and/or upland ice fields.Equilibrium-line altitudes (ELAs) for the glaciers of the TRGC were estimated using the accumulation-area ratio method, assuming that ratio to be 0.65 ± 0.05. ELAs thus derived ranged from about 3275 to 3400 m, with a mean of 3340 ± 60 m. A degree-day model (DDM) was used to infer the climatic significance of the LGM ELA. With no appreciable differences in precipitation with respect to modern climate, the ELA implies that mean summer temperatures during the LGM were 7.6 °C cooler than today. The DDM was also used to determine the temperatures required to maintain steady-state mass balances for each of the reconstructed glaciers. The required reductions in summer temperature vary little about a mean of 7.1 °C. The sensitivity of these results to slight (± 25%) changes assumed for LGM precipitation are less than ± 0.5 °C. Even under an LGM climate in which precipitation is assumed to be substantially different (± 50%) than the present, mean summer temperatures must be on the order of 7.0 to 8.5 °C lower to depress equilibrium lines to LGM altitudes. The greater sensitivity of the ELA to changes in temperature suggests that glaciation in the region was driven more by decreases in summer temperature rather than increases in precipitation.  相似文献   

6.
钻孔内温度实测表明,柯林斯冰帽积累区大部分呈温性,消融区可能呈冷性。冰帽活动层温度明显受气温季节变化的影响,降水暖渗浸对冰的增温作用显著,雪盖对温度分布也显示了一定的影响。测量显示,冰帽纵深层的温度大都接近融点,而小冰穹顶附近十数米范围内温度变化较大。小冰穹顶附近,钻进时30m以下孔中出水现象显著,可能是冰内径流、差异运动和较高盐度等因素共同作用的结果。  相似文献   

7.
Thermal regime of a valley glacier, Erikbreen, northern Spitsbergen   总被引:1,自引:0,他引:1  
The thermal regime of the valley glacier, Erikbreen, northern Spitsbergen (79°40'N, 12°30'E) was studied using radio-echo sounding and temperature measurements from eight boreholes ranging from 13.5 to 24 m. Radar images indicate a glacier with a two-layered thermal structure. A surface layer of cold ice, 20 to 60 m thick along the centre flow line, extends from an altitude above equilibrium line to the glacier front. This layer represents 20 to 35% of the glacier thickness, except at the floating front, where the cold layer is about 50%. The ice beneath the cold surface layer is interpreted to be temperate. Cold-based areas exist near the glacier margin and in some locations in the accumulation area; the ice is interpreted to be entirely temperate in central parts of the accumulation area at high altitude. Freezing of temperate ice at the base of the cold surface layer is probably the main mechanism of cold ice formation in the frontal parts of Erikbreen. Calculated heat fluxes based on the borehole measurements show that a steady state cold layer 25 to 30 m thick is likely, assuming a surface melting of 1.7 m/y and a maximum water content of 3%. In the frontal parts the calculated mean annual upward heat flux at 10 to 15 m depth is roughly 0.6 W/m2.  相似文献   

8.
Ice temperature measurements were taken from three shallow and five deep (to bedrock) boreholes on Hansbreen, Svalbard, in selected years between 1988 and 1994. In general, results show a subpolar, polythermal structure. The glacier accumulation zone is of warm ice within the entire vertical profile except the uppermost layer of seasonal temperature fluctuations where there is an upper cold ice layer in the ablation zone which varies in thickness and may even be absent in the western lateral part. The upper layer of cold ice thins along the glacier centre-line from the equilibrium line altitude down to the glacier front. The depth of the pressure melting, indicating the base of the cold ice layer, was defined at the borehole measurement sites but was not manifested as an internal reflection horizon using multi-frequency radar methods. The isotherm lies about 20 m above a radar internal reflecting horizon near the equilibrium line altitude and about 40 m above it in the frontal part of the glacier. The internal reflection horizon almost certainly reflects the high water content within temperate ice and not the cold/temperate ice interface. At 10 m depth, the temperatures are 2–3°C higher than the calculated mean annual air temperatures, demonstrating the importance of meltwater refreezing on the release of latent heat.  相似文献   

9.
In desert environments with low water and salt contents, rapid thermal variations may be an important source of rock weathering. We have obtained temperature measurements of the surface of rocks in hyper-arid hot and cold desert environments at a rate of 1/s over several days. The values of temperature change over 1-second intervals were similar in hot and cold deserts despite a 30 °C difference in absolute rock surface temperature. The average percentage of the time dT/dt > 2 °C/min was ~ 8 ± 3%, > 4 °C/min was 1 ± 0.9%, and > 8 °C/min was 0.02 ± 0.03%. The maximum change over a 1-second interval was ~ 10 °C/min. When sampled to simulate data taken over intervals longer than 1 s, we found a reduction in time spent above the 2 °C/min temperature gradient threshold. For 1-minute samples, the time spent above any given threshold was about two orders of magnitude lower than the corresponding value for 1-second sampling. We suggest that a rough measure of efficacy of weathering as a function of frequency is the product of the percentage of time spent above a given threshold value multiplied by the damping depth for the corresponding frequency. This product has a broad maximum for periods between 3 and 10 s.  相似文献   

10.
We investigated the size fraction and pigment-derived class compositions of phytoplankton within the euphotic zone of the Antarctic marginal ice zone between 63.3°S and 66.5°S along the 140°E meridian on two consecutive cruises in the late austral summer and early austral autumn of 2003. We observed significant temporal and spatial variations in phytoplankton size and taxonomic composition, although chlorophyll a concentrations were generally below 1 μg l−1 during both periods. Microphytoplankton (>20 μm), mainly diatoms, were prominent in the euphotic zone in the southernmost area around 66.5°S during late summer. In the rest of the study area during both cruises, the phytoplankton community was dominated by pico- and nano-sized populations (<20 μm) throughout the euphotic zone. The small-size populations mostly consisted of diatoms and haptophytes, although chlorophytes were dominant in extremely cold water (−1.5°C) below the overlying warm water around 65.5°S during late summer. From late summer to early autumn, chlorophytes declined in abundance, probably due to increasing temperature within the euphotic zone (−1 to 0°C). These pico- and nano-phytoplankton-dominated populations were often accompanied by relatively high concentrations of ammonium, suggesting the active regeneration of nutrients within the small-size plankton community.  相似文献   

11.
A flow-line model is coupled to a 2D temperature model to simulate the thermodynamic changes of Jutulstraumen drainage basin due to grounding line retreat and increased surface temperature since the Last Glacial Maximum (LGM). The basin consists of a plateau drained by an outlet glacier, and the simulated ice volume reductions are 1% and 2% respectively of the current grounded volume. The mountain ranges H.U. Sverdrupfjella and Neumayerskarvet fringing the plateau were not overridden by ice at the LGM, while the Nashornet nunataks closer to the grounding line were. Today the glacier is almost in balance with the current climate, with the highest thinning rate?<?5.0×10?3 ma?1 at the plateau. The simulated present-day thermal regime of the outlet glacier shows a basal layer at the pressure melting point and negative temperature gradients with depth due to horizontal advection of cold ice from the plateau. Sensitivity studies show that strain heating and horizontal advection are important for the basal temperatures in the fast flowing outlet glacier and for about half of the wide basin at the polar plateau. Increased strain heating and horizontal advection since the LGM control the response time required to readjust to the new conditions, and it controls the present-day volume.  相似文献   

12.
The recent geomorphologic evolution of the statovolcano Popocatepetl (19°03′N, 98°35′W), including the volcanic activity and the evolution of the glacier that still exists on the north face, was assessed. Most of the data were obtained from references in historical sources and aerial photographs dating from 1945. This information was supplemented with data from fieldwork conducted between 1992 and 1995. Landform typology shows volcanic and glacial interactions. The conclusions affirm that a geomorphologic evolution of the volcano occurred since the maximum glacier advance in the Little Ice Age (LIA) and the formation of a proglacial ramp. Later, fluvioglacial gorges cut into the ramp, especially during the 1921/27 eruption. Once the glacier had shrunk to a small size and was left hanging above the steep slope, the streams disappeared, and the gorges filled with blocks that fell in snow and ice avalanches.  相似文献   

13.
The fjord landscape of South America, stretching ~ 1500 km between Golfo Corcovado (~ 43°S) and Tierra del Fuego (~ 56°S), is the largest continuous fjord landscape on Earth. This paper presents the results of new structural geological and geomorphological mapping of this landscape using optical satellite images and digital elevation models. First-order geological structures are represented by strike-slip faults forming lineaments up to hundreds of kilometres long. The strike-slip faulting has been active since Late Cretaceous times and is responsible for the presence of a conspicuous structural cleavage visible as lineaments up to ~ 10 km long. A detailed analysis of these second-order lineaments from digital image data was carried out in three sectors. In Sector 1, located northwest of the North Patagonian Icefield, there are three distinct mean orientations, characterized by a main nearly orogen-parallel orientation (az. ~ 145°) and two orogen-oblique secondary orientations (az. ~ 20° and az. ~ 65°). In Sector 2, located west of the South Patagonian Icefield, there are also three separate mean orientations, with most of the lineaments concentrated between azimuths 0° and 80° (mean at ~ 36°); and two other orogen-oblique means at azimuth ~ 122° and ~ 163°. In Sector 3, around the Cordillera Darwin, there is a single main orogen-parallel mean at ~ 100–115°. In all three sectors, mapped fjord orientations bear a striking similarity to the structural data, with fjords orientated preferentially in the same direction as structural lineaments. We infer that successive glaciations followed the same ice-discharge routes, widening and deepening pre-existing geological structures at the expense of the surrounding terrain to create the fjord landscape. This study has broader implications for ice sheet reconstructions and landscape evolution beneath ice sheets because we demonstrate that the primary control on fjord development in glaciated areas is geological and not glaciological.  相似文献   

14.
Recent improvements in understanding glacial extents and chronologies in the Wasatch and Uinta Mountains and other mountain ranges in the western U.S. call for a more detailed approach to using glacier reconstructions to infer paleoclimates than commonly applied AAR-ELA-ÄT methods. A coupled 2-D mass balance and ice-flow numerical modeling approach developed by [Plummer, M.A., Phillips, F.M., 2003. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 1389–1406] allows exploration of the combined effects of temperature, precipitation, shortwave radiation and many secondary parameters on past ice extents in alpine settings. We apply this approach to the Little Cottonwood Canyon in the Wasatch Mountains and the Lake Fork and Yellowstone Canyons in the south-central Uinta Mountains. Results of modeling experiments indicate that the Little Cottonwood glacier required more precipitation during the local Last Glacial Maximum (LGM) than glaciers in the Uinta Mountains, assuming lapse rates were similar to modern. Model results suggest that if temperatures in the Wasatch Mountains and Uinta Mountains were  6 °C to 7 °C colder than modern, corresponding precipitation changes were  3 to 2× modern in Little Cottonwood Canyon and  2 to 1× modern in Lake Fork and Yellowstone Canyons. Greater amounts of precipitation in the Little Cottonwood Canyon likely reflect moisture derived from the surface of Lake Bonneville, and the lake may have also affected the mass balance of glaciers in the Uinta Mountains.  相似文献   

15.
《极地研究》1991,2(2):83-85
An approximately 195 mm diameter firn/ice core, 234 m long, was thermally drilled in 1987 austral summer at DE08 (66°43′S, 113°12′E) on Law Dome, East Antarctica, where the accumulation rate is about 1200kg/(m~2. a); 10m ice temperature is about-18.8℃. Analysis was mainly made at the site immediately after drilling. The snow stratigraphy at DE08 is characterised by the lack of coarse-grained snow and other distinct visible feature normally corresponding to annual layers. There is a smooth transformation from fine-grained snow at shallow depth to ice at about 80-90m which is greater than that at most other polar locations due to its abnormally high accumulation rate. According to the marked change in the trend of density with depth and in the crystal properties four stages of the transformation of snow to ice and development of crystal structure can be distinguished; settling stage (0-10m); sintering stage (10-90m); rapid crystal growth stage (90-170m); and dynamic metamorphism stage (170-234m). The  相似文献   

16.
Storglaciären is a 3.2 km long polythermal valley glacier in northern Sweden. Since 1994 a number of small (1–2 m high) transverse debris‐charged ridges have emerged at the ice surface in the terminal zone of the glacier. This paper presents the results of a combined structural glaciological, isotopic, sedimentological and ground‐penetrating radar (GPR) study of the terminal area of the glacier with the aim of understanding the evolution of these debris‐charged ridges, features which are typical of many polythermal glaciers. The ridges originate from steeply dipping (50–70°) curvilinear fractures on the glacier surface. Here, the fractures contain bands of sediment‐rich ice between 0.2 and 0.4 m thick composed of sandy gravel and diamicton, interpreted as glaciofluvial and basal glacial material, respectively. Structural mapping of the glacier from aerial photography demonstrates that the curvilinear fractures cannot be traced up‐glacier into pre‐existing structures visible at the glacier surface such as crevasses or crevasse traces. These curvilinear fractures are therefore interpreted as new features formed near the glacier snout. Ice adjacent to these fractures shows complex folding, partly defined by variations in ice facies, and partly by disseminated sediment. The isotopic composition (δ18O) of both coarse‐clear and coarse‐bubbly glacier ice facies is similar to the isotopic composition of the interstitial ice in debris layers that forms the debris‐charged ridges, implying that none of these facies have undergone any significant isotopic fractionation by the incomplete freezing of available water. The GPR survey shows strong internal reflections within the ice beneath the debris‐charged ridges, interpreted as debris layers within the glacier. Overall, the morphology and distribution of the fractures indicate an origin by compressional glaciotectonics near the snout, either at the thermal boundary, where active temperate glacier ice is being thrust over cold stagnant ice near the snout, or as a result of large‐scale recumbent folding in the glacier. Further work is required to elucidate the precise role of each of these mechanisms in elevating the basal glacial and glaciofluvial material to the ice surface.  相似文献   

17.
Vegetation, microclimate, seedling frequency, freezing tolerance, and cold acclimation were compared for seedlings of Artemisia tridentata collected from 1775, 2175, and 2575 m elevation in the eastern Sierra Nevada, California. Data were used to test the hypothesis that ecotypic differences in stress physiology are important for seedling survival along gradients from desert to montane ecosystems. The vegetation canopy cover and A. tridentata seedling frequency were greatest at 2575 m, compared to 1775 and 2175 m. Snow cover ameliorated temperatures near the soil surface for part of the winter and depth varied across elevations. Freezing tolerance was compared for seedlings maintained in growth chambers at day/night air temperatures of 25°C/15°C. The temperature at which electrolyte leakage and Photosystem II function (FV/FM) from leaves were half-maximum was approximately −13·5°C for leaves of seedlings from all three elevations. Shifting day/night air temperatures from 25°C/15°C to 15°C/5°C initiated about 1·5° of acclimation by plants from all three altitudes, with seedlings from the highest elevation exhibiting the greatest acclimation change. Measurements of ambient air and canopy temperatures at the three elevations indicated that wintertime average low temperatures were consistent with the measured degree of freezing tolerance. At small spatial scales used in this study, pollen and seed dispersal between study sites may have precluded resolution of ecotypic differences. Patterns of freezing tolerance and cold acclimation may depend on a combination of mesoclimate and microclimate temperatures, canopy cover, snow depth, and snow melt patterns.  相似文献   

18.
The southernmost glacier in Europe formed during the Little Ice Age at the foot of the north wall of Picacho del Veleta (3 398 m) in Sierra Nevada, in the southeast region of the Iberian Peninsula (lat. 37δ03‘N, long. 3δ22‘W). The glacier gradually retreated during the last century, leaving a large talus slope at the base of the wall. The unconsolidated material covering the ice masses acted as a thermal insulator. Recent bottom temperature of snow (BTS) analyses and drillings indicate that the ice still exists within the talus. Evidence from field observations made during the period 1995–2001, revealed that large mass movements occurred during the driest summers (1998 and especially, 1999 and 2000) when the talus was snow free. These conditions suggest a direct relationship between talus stability and thermal insulation from the snow cover in areas where buried ice or decaying marginal permafrost exists.  相似文献   

19.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

20.
Lake Lisan, the lake that filled the Jordan graben during the Last Glacial, left behind a well developed sequence of erosional and depositional shore terraces in the south east of the current Dead Sea. These terraces record a series of stillstands that were caused by small transgressions within an overall trend of falling lake levels. The terraces were observed in places where they had not been identified previously. The morphology of the terraces was investigated in six cross-sections using differential GPS altimetry. The levels of the terraces range between − 370 and − 148 m a.s.l. The high stand of Lake Lisan at − 148 m correlates well with the high level of − 150 m reported by Bowman and Gross [Bowman, D., Gross, T., 1992. The highest stand of Lake Lisan: ~ 150 meters below MSL. Israel Journal of Earth-Science 41, 233–237.] along the western coast of Lake Lisan. The lake terraces are horizontal, elongated and tectonically undisturbed, and have a sub-horizontal foreshore (tread) with an average slope of 8.2° and steep backshore cliff (riser) with an average slope of 17.7°. The six cross-sections show a good altitudinal correlation between their terraces. Moreover, the terraces appear in undisturbed continuity on the aerial photos. These morphological characteristics demonstrate that the retreat of the lake was a result of substantial climatic changes, not of tectonic subsidence.In-situ stromatolites were found on most of the terraces, reflecting a shallow water environment and emphasizing that these terraces are recessional. Well-developed desert varnish and Tafoni observed on blocks sitting on the terrace surfaces imply a long period of exposure and a low rate of post lacustrine erosion. The formation of Lisan terraces is constrained mainly by coastal slope, water depth and underlying lithology. The morphological analysis of these terraces allows identification of two kinds of pseudo-terraces, which were formed as a result of tread or riser destruction.U/Th and OSL dating allowed the dating of three events within the lake level curve more precisely. The high level of − 148 m occurred at 30.5 ± 0.22 ka BP, consistent with the Heinrich Event 3 and Dansgaard–Oeschger stadial 5, the coldest period in the NGRIP Greenland Ice Core record. The next lower terrace at − 154 m was formed at 22.9 ka BP ± 0.29 and corresponds to the stadial 2C, the final phase of the Last High Glacial. The correlation between the Lisan high stands and climatic stadials suggests that Northern-Hemispheric cold periods led to periods with a more positive water balance in the Near East. At ~ 10 ± 0.8 ka BP Lake Lisan experienced a sharp drop to − 200 m followed by a transgression between 9.5 to 7 ka BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号