首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 625 毫秒
1.
南极普里兹湾及其邻近海域表层水镭同位素的分布及应用   总被引:1,自引:0,他引:1  
中国第27次南极科学考察期间(2010年12月30日至2011年1月16日),对普里兹湾及其邻近海域表层海水进行了226Ra和228Ra的分析,结果表明:226Ra和228Ra比活度的变化范围分别为1.47—2.43Bq/m3和0.17—0.45Bq/m3,平均值分别为2.13Bq/m3和0.29Bq/m3,228Ra/226Ra)A.R.(228Ra与226Ra的活度比)的变化范围为0.08—0.20,平均值为0.14。根据盐度和226Ra的质量平衡方程,计算出研究海域表层水中冰融水、南极夏季表层水和普里兹湾中深层水的份额。研究海域表层水中温度、盐度、226Ra、228Ra、228Ra/226Ra)A.R.和冰融水份额的空间分布显示,在埃默里冰架前沿海域,西侧海域较东侧海域具有低温、高盐、高226Ra、低228Ra、低228Ra/226Ra)A.R.、低冰融水份额的特征,证实埃默里冰架下水体东进西出的运动规律。根据埃默里冰架前沿东、西侧水体228Ra/226Ra)A.R.的差异,估算出埃默里冰架下表层水体东进西出所经历的时间为1.85a。此外,在普里兹湾湾口中部海域(66.5—67.5°S,72°—74°E),观察到次表层水的上升通风作用,该区域较高的228Ra含量和228Ra/226Ra)A.R.证明这些表层水体并非来自湾外绕极深层水的上涌,而可能来自湾内埃默里冰架输出水体。  相似文献   

2.
20 0 0年 3月 ,从南极洲罗斯冰架裂离了一个 1 1 0 0 0 km2 的冰山 ,与康涅狄格州 ( B1 5)的面积相同。两个月以后 ,一个面积相当的冰山从该大陆的龙尼冰架分离 ,此后 3个月 ,在宁尼斯冰舌 ,一块 1 450 km2 的冰块轰然坠海 ,在海岸线附近裂成数块 ,漂向温暖的水域。2 0 0 0年 9月 ,另一块巨大的古冰块裂离了罗斯冰架。目前 ,卫星探测到南极冰架上横亘着一条长长的裂隙 ,这条巨大的裂隙预示着未来1 2~ 1 8个月又会有另一个大冰山诞生。科学家们极想知道这些大块体突然分裂的原因。通常来说 ,每个南极冰架每隔几十年才有一次大面积的冰山分…  相似文献   

3.
南极海冰和陆架冰的变化特征   总被引:8,自引:1,他引:8       下载免费PDF全文
利用美国冰中心和雪冰中心提供的海冰资料和我国南极考察现场的海冰观测资料,对南极海冰的长期变化进行了研究.研究表明20世纪70年代后期是多冰期;80年代是少冰期;90年代南极海冰属于上升趋势,后期偏多,区域性变化差别大,东南极海冰偏多,西南极海冰即南极半岛两侧尤其是威德尔海区和别林斯高晋海的冰明显偏少.东南极和西南极海冰的变化趋势总是反相的.90年代后期普里兹湾的海冰明显偏多,南极大陆陆架冰外缘线总体没有明显的收缩,有崩解也有再生的自然变化现象.西南极威德尔海的龙尼冰架和罗斯海冰架东部崩解和收缩趋势明显,东南极的冰架也有崩解和收缩,但没有西南极明显.陆架冰崩解向海洋输送的冰山对全球海平面升高有一定的影响.目前南极冰盖断裂崩解形成的冰山,向海洋输入的水量可使全球海平面上升约14mm.南极海冰没有随着全球气候温暖化而明显减少,而是按照东南极和西南极反相的变化规律进行周期性的变化、调整和制约.  相似文献   

4.
利用第15,16,21,25,26和27次南极考察在普里兹湾及邻近海域所获取的CTD观测数据,对该海域主要水团、典型层面水文要素平面分布等进行了对比分析。研究表明:1)普里兹湾及邻近海域水团主要包括南极表层水、普里兹湾陆架水、绕极深层水和南极底层水。夏季表层水温盐变化显著,没有固定的核心值;绕极深层暖水的分布范围和温盐特征相对比较稳定;南极底层水在各航次中均有出现。2)在陆架水中存在位温低于海面冰点的冰架水和温度低于现场温度的过冷水。冰架水主要分布在冰架前缘和70°30′E断面上,沿70°30′E断面最北可扩展至陆坡附近;过冷水主要分布在冰架前缘西部。3)高盐陆架水在普里兹湾存在较少,主要分布在埃默里冰架前缘和73°E断面67°30′~68°45′S范围内,其中S34.62的高盐陆架水均位于73°E断面附近,并沿73°E断面向北扩展至67°30′S附近,盐度最大值为34.64。4)夏季表层温盐分布时空变化特征显著。部分航次埃默里冰架前缘存在一个很强的纬向温度锋面,最高温度达到3.55°C。5)绕极深层水在第15航次涌升至100m以浅,涌升最明显的海域在63°00′~64°00′S附近,73°E断面涌升最强。  相似文献   

5.
Emery冰架北缘热盐结构的不均匀性及其成因   总被引:1,自引:0,他引:1  
根据2005-2006年夏季中国南极第22次南极科学考察的海洋水文资料(64°00′~69°15′S,68°00′~76°00′E),分析了普里兹湾内Emery冰架北缘浮冰区的水团性质。发现Emery冰架东西两端的表层热含量明显高于Emery冰架北缘中部。此外冰架北缘中部海域的上混合层和季节跃层的深度也明显小于东西两端。冰架北缘的底层热盐结构则无明显的东西差异。海洋遥感的证据表明:冰架北缘的表层水的不均匀性与浮冰和冰间湖的空间分布有着密切的联系。  相似文献   

6.
针对传统的花杆测量法、GPS实测法在南极冰架高程变化监测上的覆盖范围小、操作难度大和安全成本高以及基于SAR差分干涉冰雪表面高程测量易失相干等问题。基于亚米级卫星激光测高数据ICESat/GLAS与ICESat-2/ATLAS重叠点法和克里金插值法,对Amery冰架近15年高程变化进行监测。为了纵向比较,本文以2003~2018年、2004~2019年和2005~2020年3组15年周期数据进行高程变化监测。实验结果表明:在近15年里Amery冰架冰雪物质积累区域大于减少区域,高程变化主要分布在0~±2 m之间,在冰架与大洋接壤区域高程显著升高近40 m。从3组数据纵向对比分析发现,Amery冰架中部区域高程变化相对稳定,边缘区域受接壤冰盖影响年际波动相对较大。  相似文献   

7.
正生态学家指出,由于南极冰块消融、繁殖地长期下雨、天气炎热等气候变化引起的不良后果,大约60%的企鹅或在本世纪末消失。科学家利用南极科考站、卫星和海上探险队收集到的企鹅聚居地观测数据,建立了"企鹅领地"观测模式。结果发现,企鹅数量及其栖息地面积不会增加,相反会显著减少。据估算,到本世纪末,大部分企鹅聚居地将不适于它们生存,企鹅数量将因此减少一半还多。目前南极半岛一些地区和最常出现极端天气的南极其他温暖地区的企鹅数量已经减少了80%。这种消  相似文献   

8.
本文研究采自位于南极罗斯海西部的ANT32-RB16C柱状沉积物,根据粒度、有机碳和生物标志化合物数据探讨末次冰盛期(24.8 ~20 ka BP)以来该地区有机质来源及沉积环境特征。该柱状样记录了冰架下沉积、冰架前沉积、开阔海域沉积的沉积环境。指示有机质来源的生物标志化合物指标表明该柱状样中所含有机质主要为浮游植物、细菌等海源输入,同时伴有少量陆源物质混合输入。末次冰盛期,由于冰架的影响有机质含量较低,环流影响使得有机质受低等浮游藻类生物等海源影响较大。末次冰消期(20~11.7 ka BP),罗斯冰架消退,冰川溶解释放的有机质在此沉积,使得陆源有机质输入增多,有机质含量升高。进入全新世,有机质含量较末次冰盛期和末次冰消期明显升高,海源输入比例增大,同时细菌等原核生物增多,导致短链正构烷烃降解程度较大。研究区的氧化还原环境主要受冰架与海冰限制作用的影响,与有机质含量和高氧的南极底层水关系不大。总体来说,从末次冰盛期到末次冰消期,研究区沉积环境受罗斯冰架进退影响,全新世以来受气候变化影响。  相似文献   

9.
南极麦肯齐湾冰间湖的时空变化及主要影响因素分析   总被引:1,自引:0,他引:1  
利用2003—2009年AMSR-E日平均海冰密集度数据,对南极普里兹湾埃默里冰架前缘中西部的麦肯齐湾冰间湖进行了分析。针对冰架前缘冰间湖的特点,本文在阈值法和连通域法的基础上,提出了生长点法作为识别此类冰间湖的方法。研究发现,该冰间湖的开始时间为每年的3月中下旬,结束时间为每年的10月末到11月初,平均出现天数为226d。冰间湖的面积每天都发生变化,表现出天气尺度的变化特征。全年累计的冰间湖面积平均为(8.33±1.55)×105 km2。冰间湖最大面积为1.69×104 km2,出现在2004年。结合NCEP再分析数据中的日平均风速资料的分析发现,在6~8月,冰间湖的天气尺度变化主要是受风场的影响,冰间湖面积与离岸风速有很好的相关性。  相似文献   

10.
常规异养细菌监测方法精度高但费时费力且不能连续观测, 而卫星遥感成本低、可以大面积同步、长时间周期观测, 可与常规方法互补。文章利用南海北部10个航次采集的表层异养细菌丰度和卫星遥感反射率, 采用统计回归的方法建立了异养细菌丰度的遥感模型, 其模型决定系数为0.81, 均方根误差为2.44×108个·L-1, 平均相对误差为21%, 具有较好表现。利用该模型估算南海北部表层异养细菌丰度, 结果显示: 从珠江河口到南海北部开阔海域, 异养细菌丰度逐渐减小。夏季河口地区平均异养细菌丰度最高, 春季最低; 近岸海域靠近珠江河口西侧的平均异养细菌丰度高于东侧; 冬季陆架地区平均异养细菌丰度最高, 夏季最低; 开阔海域的异养细菌丰度变化幅度较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号