首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在测深、钻探、室内测试、水文泥沙测验等勘测资料基础上,详细分析宁波穿山水道海域水文气象、工程地质、地震活动性、浅层气、滑坡、沙土液化、岸坡和冲刷槽冲淤动态等因素,这些分析结果表明穿山水道海底稳定,海岸和海洋工程环境适宜.  相似文献   

2.
波浪作用下埕岛海域海底土液化分区   总被引:1,自引:0,他引:1  
根据埕岛海域表层沉积物特征,结合该区的波浪实测资料推算的波浪要素,利用动三轴实验得到研究区土体在循环荷载作用下孔隙水压力的增长与振动次数的关系,计算研究区内海底土层的液化可能性和液化所需的时间,并根据土体在不同水深情况下达到液化所需的时间对研究海域进行了液化分区。结果显示,7-8 m等深线之间的海底土体由于受到波浪破碎作用的影响,最易发生液化,液化影响深度也最深,自该海域向近岸和远海,液化可能性降低;土层埋深为2.5 m以浅时,研究区大部分区域液化可能性为高,而到埋深为4 m时土层液化可能性明显降低。  相似文献   

3.
波浪作用对水库岸坡稳定性有重要影响。为了解波浪在岸坡地形中的传播演变机制和孔隙水压力响应特性,在波浪水槽末端铺设长6 m、坡度1∶16的斜坡沙床进行试验。通过改变入射波浪参数,测量斜坡段各处波面形态,采集斜坡段不同位置处孔隙水压力,分析了波浪在沙质岸坡上浅水变形区域内波面变化特征、波能演变规律以及岸坡土体孔压特征。结果表明:随着入射波浪厄塞尔数的增大,波浪浅水变形更加明显,波形不对称性加剧,各阶谐波之间互相作用更加强烈;水深较大区域,岸坡渗透作用大于浅水变形作用,波高呈现减小趋势;浅水变形剧烈区,浅水变形作用大于岸坡渗透作用,波高呈现增大趋势,最终破碎;孔压随入射波高与波周期的增大而增大,岸坡不同位置处孔压沿深度衰减速率和随波高增长速率均不同;岸坡孔压沿深度衰减速率与入射波周期呈现出正相关关系,与波高并无太大关系。  相似文献   

4.
对黄河三角洲东北部地区的高分辨率水声学资料进行了综合研究。根据所记录的破坏土体变形程度、运动产生的平面形状和地貌特征形态,对土体失稳过程进行分类:浅表土体变形、塌陷凹坑、滑坡和沉积物重力流。结果表明:(1)浅表土体形变的变形程度最低,出现在研究区斜坡上部平滑海底,主要为绳网状泄水构造和表层拉张裂隙。(2)塌陷凹坑在研究区内广泛出现,是局部土体液化后发生了垂直沉降的结果。(3)滑坡多发生在水下斜坡的中上部,由弧形塌陷区、狭窄的冲沟通道和负地形沉积物堆积区组成。滑坡陡坎后缘发现拉张裂隙。(4)沉积物重力流是土体发生变形程度最大,搬运距离最长的土体破坏变形形式。局部区域多次受到沉积物重力流切割和充填作用。  相似文献   

5.
波浪作用下黄河口粉土液化与振荡层形成试验研究   总被引:1,自引:0,他引:1  
通过室内水槽试验,观察波浪作用下土体产生的现象,分析了土体内孔隙水压力的变化及波浪作用后土体粒度组成变化特征,研究了波浪荷载作用下黄河口粉土液化和"振荡层"的形成过程。试验及讨论结果表明:在波浪作用下,上层粉土体大部分时间处于液化状态;由液化土形成的振荡土层与下部土层之间形成"W"形的滑动面,振荡土层的厚度随着波浪作用时间的增加而变小;在波浪的振动和孔隙流体的共同作用下,土颗粒重新排列,细粒物质向上迁移,土体底部土颗粒粒径较为粗大,振荡层范围内土颗粒粒径组成相似,粒径分布范围较小;其内部孔压比随深度和波浪作用次数的增加而较少,土体内部积累的超孔压逐渐消散,海床土体逐渐趋于稳定。  相似文献   

6.
海底土体在波浪作用下能否产生液化是海岸工程所关心的问题。借鉴地震液化判别使用的砂土液化判别方法,将海底粉质土波致液化的判别分为初判和复判2个阶段。初判以所致海床土体发生破坏的临界循环应力比界限指标来判别,以土质基本特征和波浪条件为参数,对某海域海底液化形成判断;复判以波致海床土体中剪应力与实际土体的动剪切强度比较来判别。结合已有研究成果给出了波致土体液化判别的具体方法。  相似文献   

7.
波浪会对海床产生反复的作用力,由此引起的土体颗粒间孔隙水压力变化是造成土体液化的主要原因。使用自行研发的孔压监测设备,对黄河口埕岛海域易液化区海底孔压进行了长时间、高精度的观测,并对孔隙水压力、波高以及潮位间的关系进行分析。监测结果显示,本次监测条件下波浪最大作用深度介于0.5~1.5 m之间,超过该作用深度后孔压无明显变化。土体内部孔隙水压力的变化主要由潮位和波高决定,潮位的作用可使孔压缓慢平滑的变化且对超孔压无影响;波高的作用可使孔压快速、剧烈地振荡并导致超孔压的出现。  相似文献   

8.
浙北近海潮汐通道地区水下滑坡分布及成因机制研究   总被引:2,自引:0,他引:2  
依据海域的自然环境特征,浙江东部近海可划分为以下4个海区:Ⅰ现代长江水下三角洲前缘斜坡区,Ⅱ河口港湾区,Ⅲ岛群区,Ⅳ水下岸坡区。其中岛群区依据潮汐通道的发育程度又划分为3个亚区:Ⅲ1舟山群岛北区、Ⅲ2舟山群岛南区、Ⅲ3南部岛群区。研究结果表明土体失稳主要分布于Ⅱ、Ⅲ2区的潮汐通道中,且对通道深槽边坡、通道凹岸、通道交汇处以及通道中的残留高地边缘等部位最为常见。通过对水下滑坡的分布规律及潮汐通道的冲  相似文献   

9.
收集埕岛海域地区近十余年的地质勘察资料,汇总该区地质灾害的类型及其分布情况,发现该区存在着凹坑、冲沟、滑塌、泥流舌、海底穿刺、粗糙海底和埋藏古河道等地质灾害,在海域西北、中部和东南部均有分布,简要探讨形成机理,计算波浪循环荷载在海床中产生的循环应力比,以及根据标贯击数和黏粒含量建立土体的循环阻抗比,然后,计算不同风浪等级下每个钻孔1m深度处土体抗液化安全系数,采用surfer8.0软件绘制安全系数等值线图。发现抗液化性能较好的区域主要分布在海域中部三块地区,随着风浪等级增大,整个区域内液化面积也逐渐扩大,海域东南地区有少量油井和管线分布,区地质灾害发生频率较高,土体抗液化性能较差,工程设施应重视较大风浪期间土体液化对其安全性能的影响。  相似文献   

10.
舟山海域海洋灾害地质因素可划分为两大类9种类型,两大类为活动性灾害地质因素和限制性地质条件,9种类型分别包括海底活动断层、滑坡、浅层气、潮流沙脊和沙波、海岸侵蚀(属活动性灾害地质因素)和不规则起伏的浅埋藏基岩、埋藏古河道、水下陡坎、冲刷沟槽(属限制性地质条件)等。滑坡主要是由重力作用所致,多发生在通道深槽边坡、通道凹岸、通道交汇处、通道中高地边缘、通道边坡次级沟槽等部位。浅层气主要分布在自岸滩至25m水深范围内的泥质、砂质沉积区。侵蚀海岸大多分布在濒临开敞海域的基岩海岸和岛屿向海侧。潮流沙脊和沙波多见于潮流通道的口门或口外,深槽边坡也有分布。不规则浅埋藏基岩常出现在沿岸区域和岛屿附近。埋藏古河道主要分布在舟山群岛东部海域的内陆架地区,此外,在岱衢洋、舟山岛与岱山岛之间的灰鳖洋、中街山列岛东部海域也见到少量的埋藏古河道。陡坎以侵蚀成因及滑坡成因为主,发育广泛,其高度和坡度变化较大。冲刷沟槽主要分布在岛屿之间狭窄、潮流或水流较急的区域,陡峭的沟槽常伴生陡坎,易产生滑坡,部分地段有波状微地貌发育。本文认为,研究区海洋灾害地质因素的发育离不开地形地貌、底质和水动力条件,其分布具有一定的规律性。常见多种灾害地质因素相互依存,互相触发。潮流作用下海底浅部沉积物的活动性是引起研究区海洋工程设施安全隐患的主要因素。  相似文献   

11.
Abstract

Submarine faults and slides or slumps of Quaternary age are potential environmental hazards on the outer continental shelf (OCS) of the northern Gulf of Alaska. Most faults that approach or reach the seafloor cut strata that may be equivalent in age to the upper Yakataga Formation (Pliocene‐Pleistocene). Along several faults, the seafloor is vertically offset from 5 to 20 m. A few faults appear to cut Holocene sediments, but none of these shows displacement at the seafloor. Submarine slides or slumps have been found in two places in the OCS region: (1) seaward of the Malaspina Glacier and Icy Bay, an area of 1200 km2 with a slope of less than 0.5°, and (2) across the entire span of the Copper river prodelta, an area of 1730 km2, having a slope of about 0.5°. Seismic profiles across these areas show disrupted reflectors and irregular topography commonly associated with submarine slides or slumps. Potential slide or slump areas have been delineated in areas of thick sediment accumulation and relatively steep slopes. These areas include (1) Kayak Trough, (2) parts of Hinchinbrook Entrance and Sea Valley, (3) parts of the outer shelf and upper slope between Kayak Island and Yakutat Bay, and (4) Bering Trough.  相似文献   

12.
High-resolution multi-beam/single-beam bathymetric data and seismic profiling data from the latest surveys are used to map and interpret the detailed seafloor geomorphology of the western region of the North Yellow Sea (NYS), China. The mapping area covers 156 410 km2, and incorporates a flat shelf plain, subaqueous accumulation shoals, tidal scouring troughs, and tidal sand ridge groups. Offshore areas with water depths less than 50 m in the western region of the NYS are mainly covered by thick, loose sediments, forming wide spread accumulation geomorphological features; these include the Liaodong Peninsula subaqueous accumulation system containing shoals and rugged scouring troughs, and the large mud wedge of the Shandong Peninsula. In the central part of the NYS, there is a relatively flat residual shelf plain with coarser sediment deposits. This flat shelf plain has a water depth larger than 50 m and a thin layer of sediment, on which there is a large pockmark field caused by seafloor seepage. These geomorphological structures indicate that modern sedimentary processes are the main driving force controlling the sculpture of the current seafloor surface landform. Extensive strong tidal current systems and abundant sediment sources provide the critical external forces and essential conditions for the formation of seafloor geomorphology. The tectonic basement controls the macroscopic morphological shape of the NYS, but is reflected very little in the seafloor geomorphic elements. Our results provide a detailed seafloor geomorphological map of the western region of the NYS, an area that has not previously mapped and also provide a scientific framework for further research into offshore seafloor geomorphology, shelf sedimentary processes, and submarine engineering construction in this region.  相似文献   

13.
针对海底地形复杂程度分类问题,在考虑传统水深均值的基础上引入坡度和起伏度两个地形因子作为表征海底地形复杂程度的分类指标并进行量化,对水深数据空间分辨率进行统一,建立包含18种典型海底特征的海底地形复杂度分类库,利用BP神经网络对建立的分类库进行训练学习。为验证该方法的有效性和适用性,选取地形复杂度不同的4块实验区分别采用统计学方法和BP神经网络算法进行海底地形复杂度进行分类,对比发现该方法可以实现海区海底平坦、一般、复杂三种地形的自动识别与分类,并保留实验区海底地形复杂度细节信息。  相似文献   

14.
The Chandeleur Islands lie on the eastern side of the modern Mississippi River delta plain, near the edge of the St. Bernard Delta complex. Since abandonment approximately 2,000 years b.p., this delta complex has undergone subsidence and ravinement as the shoreline has transgressed across it. High-resolution seismic-reflection, sidescan-sonar, and bathymetry data show that seafloor erosion is influenced by locally variable shallow stratigraphy. The data reveal two general populations of shallow erosional depressions, either linear or subcircular in shape. Linear depressions occur primarily where sandy distributary-channel deposits are exposed on the seafloor. The subcircular pits are concentrated in areas where delta-front deposits crop out, and occasional seismic blanking indicates that gas is present. The difference in erosional patterns suggests that delta-front and distributary-channel deposits respond uniquely to wave and current energy expended on the inner shelf, particularly during stormy periods. Linear depressions may be the result of the sandy distributary-channel deposits eroding more readily by waves and coastal currents than the surrounding delta-front deposits. Pits may develop as gas discharge or liquefaction occurs within fine-grained delta-front deposits, causing seafloor collapse. These detailed observations suggest that ravinement of this inner shelf surface may be ongoing, is controlled by the underlying stratigraphy, and has varied morphologic expression.  相似文献   

15.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

16.
A reconnaissance sidescan sonar survey in Bristol Bay, Alaska revealed extensive areas of seafloor with features related to walrus foraging. They are similar to those seen in areas such as the outer Bering Sea and Chukchi Sea. Two types of feature were observed: (a) small (≪1 m diameter) shallow pits, often in clusters ranging in density from 5 pits per hectare to 35 pits per hectare; and, (b) more abundant, narrow, sinuous furrows, typically 5 to 10 m long with some reaching 20 m or more. Most foraging marks were in less than 60 m water depth in areas of sandy seafloor that were smooth, hummocky or characterized by degraded bedforms; the absence of foraging marks in other areas may be related, in part, to their more dynamic nature. The distribution of foraging marks was consistent in a general way with walrus locations from satellite telemetry studies.  相似文献   

17.
This paper applies, for the first time in offshore deepwater, a method based on geographic information systems for seafloor susceptibility assessment as a first approach to marine geohazard mapping in fluid leakage areas (slope instabilities, gas escapes, seabed collapses, pockmarks, etc.). The assessment was carried out in a known seabed fluid-flow province located on the Iberian margin of the Gulf of C??diz, Spain. The method (based on statistical bivariate analysis) creates a susceptibility map that defines the likelihood of occurrence of seafloor features related to fluid flow: crater-like depressions and submarine landslides. It is based on the statistical index (Wi) method (Van Westen in Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73?C84, 1997), in which Wi is a function of the cartographic density of seafloor features on ??factor maps??. The factors selected monitor the seafloor??s capability to store and transfer hydrocarbon gases and gravitational instability triggers: geology-lithology, gas hydrate stability zone thickness (temperature, pressure?Cwater depth and geothermal gradient), occurrence of diapirs, proximity to faults or lineaments, and slope angle of the seafloor. Results show that the occurrence of seafloor features related to fluid flow is highest where the factors ??gas source and storage?? and ??pathways of fluid escape?? converge. This means that they are particularly abundant over diapirs in contourite deposits, in the vicinity of faults, and inside theoretical gas hydrate stability fields thinned by warm undercurrents. Furthermore, the submarine landslides located on the Palaeozoic-Toarcian basement are not related to fluid leakage. This methodology provides helpful information for hazard mitigation in regional selection of potential drill sites, deep-water construction sites or pipeline routes. It is an easily applied and useful tool for taking the first step in risk assessment on a regional scale for vast areas where fluid leakage may be present, the geological model is known, and the geologically hazardous features have already been mapped.  相似文献   

18.
Submarine pipelines that transport crude oil and natural gas are often in a complex marine geological environment and may become unstable and fail upon impact by submarine landslides. Previous research has mostly focused on the impact forces exerted by submarine landslides on suspended pipelines, but the impact of submarine landslides on pipelines laid on the seafloor at various impact angles, θ, have been relatively infrequently discussed, and the effects of suspended height, H, on the impact forces exerted by submarine landslides on pipelines have not been thoroughly investigated. In this study, based on the Herschel–Bulkley model, the impact forces exerted by a submarine landslide on laid-on or suspended pipelines at various impact angles θ were simulated using the computational fluid dynamics (CFD) approach. Equations for calculating the axial and normal drag coefficients of a submarine pipeline were proposed. The CFD numerical simulation results were rearranged based on the soil mechanics approach. By comparing the parameters, an essentially corresponding relationship was found between the soil mechanics and CFD approaches when the equations were used to calculate the impact forces exerted by a submarine landslide on a pipeline. In addition, a semi-analytical expression for the failure envelope was provided. Furthermore, the effects of H on the forces on a pipeline were discussed, and an equation for calculating the acting forces on a pipeline along the flow direction of a submarine landslide that comprehensively accounts for the effects of θ and H was proposed. The lift force was discussed preliminarily and the results provide a basis for further investigation. The achievement of this study is applicable for selecting locations of submarine pipeline routes and for designing submarine pipelines.  相似文献   

19.
We recorded high-resolution seismic-reflection data in the northern Gulf of Mexico to study gas and gas-hydrate distribution and their relation to seafloor slides. Gas hydrate is widely reported near the seafloor, but is described at only one deep drill site. Our data show high-reflectivity zones (HRZs) near faults, diapirs, and gas vents and interbedded within sedimentary sections at shallow depth (<1 km). The HRZs lie below the gas-hydrate-stability zone (GHSZ) as well as within the zone (less common), and they coincide with zones of shallow water-flows. Bottom simulating reflections are rare in the Gulf, and not documented in our data.We infer HRZs result largely from free gas in sandy beds, with gas hydrate within the GHSZ. Our estimates for the base BHSZ correlate reasonably with the top of HRZs in some thick well-layered basin sections, but poorly where shallow sediments are thin and strongly deformed. The equivocal correlation results from large natural variability of parameters that are used to calculate the base of the GHSZ. The HRZs may, however, be potential indicators of nearby gas hydrate. The HRZs also lie at the base of at least two large seafloor slides (e.g. up to 250 km2) that may be actively moving along decollement faults that sole within the GHSZ or close to the estimated base of the GHSZ. We suspect that water/gas flow along these and other faults such as ‘chimney’ features provide gas to permit crystallization of gas hydrate in the GHSZ. Such flows weaken sediment that slide down salt-oversteepened slopes when triggered by earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号