首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

2.
This study was conducted to collect historical land use information that would help explain the historical patterns in accumulation of sediment and phosphorus in Lake Pepin documented by Engstrom et al. (J Paleolimnol, this issue). A wide range of historical factors including cropping systems, phosphorus applications from fertilizer and manure, human and animal populations, river flows and phosphorus discharges from waste water treatment plants were studied using statistical methods. Results showed that sediment losses from the Minnesota River basin are significantly correlated with historical increases in river flows, row crop production acreage and basin population. Total phosphorus accumulations in the sediments of Lake Pepin are significantly correlated with increased phosphorus discharges from metropolitan area wastewater treatment plants, and increases in row crop acreage and river flows. Total phosphorus inflows to Lake Pepin are significantly correlated with increases in river flows, row crop acreage and phosphorus fertilizer applied to agricultural lands. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号