首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crustal structure in a number of Kamchatka volcanic regions is deduced from geophysical data. Anomalous structure and physical properties of the crust are found beneath some volcanic groups. Beneath the Klyuchevskaya and Avachinskaya volcanic groups crustal layers have high elastic properties. There is a thick transition layer from the crust to the upper mantle which has lower clastic properties and electrical resistance. These data, supported by experimental investigations of elastic properties of xenoliths in volcanic rocks at high pressures and temperatures, enable the probable substance composition of the crustal layers to be defined. The feeding zones and magma chambers of individual volcanoes are deduced from anomalies in gravity, electrical conductivity and seismic wave propagation.  相似文献   

2.
 Previous detailed studies of large rhyolite bodies propose that their elemental and isotopic characteristics were largely acquired in shallow crustal magma chambers. This model explains the common chemical and isotopic zonations of large volumes of rhyolites as well as the less common chemical and isotopic homogeneity of such bodies. We report an intermediate situation (the Estérel massif, southeast France) in which chemical variations contrast with Nd-isotope homogeneity. We thus infer that, in this case, large volumes of rhyolite resided for enough time in shallow magma chambers to develop chemical zonations through differentiation, but this process was not accompanied by crustal assimilation. The subordinate amount of mafic rocks cropping out in the Estérel probably evolved from basalt to trachyte through assimilation and fractional crystallization. The relatively radiogenic Nd-isotope signatures of the rhyolite compared with the Hercynian crust show that it cannot have been generated by partial melting of exposed basement rocks. Several geological similarities with large rhyolitic provinces could suggest that the rhyolite was purely mantle derived or, alternatively, generated by partial melting of an ad hoc crustal component. However, mineralogical, geochemical, and geodynamic connections between the Estérel rhyolite and the hypersolvus anorogenic granites of Corsica, as well as the extreme Nd-isotope homogeneity of the rhyolite, lead us to propose that the rhyolite was generated by mixing between mantle-derived magmas and a mafic lower crust. This scenario accounts for the relatively radiogenic Nd-isotope signatures of the rhyolite compared with the Hercynian crust. The good Nd-isotope homogeneity observed in the rhyolite implies that the mixing process, which occurred in the deep crust, was complete and provided a shallow magma chamber with isotopically and probably chemically homogeneous magmas. Received: 5 December 1997 / Accepted: 16 June 1998  相似文献   

3.
A survey of Sr isotopic ratios and other compositional features of subduction-related magma suites reveals significant correlations between these averaged parameters and characteristics of the underlying crust (i.e., thickness, composition, and age). These observations lead to the conclusion that crust and(or) mantle rocks in the hanging walls of subduction zones are involved in modification of primary mafic magmas (typically basalt or basaltic andesite). It is proposed that mafic magmas will stagnate within the crust or uppermost mantle where they may differentiate and react with wall rocks. The extent to which such processes manifest themselves will depend upon details of the local crustal structure. In particular, the composition and age of the crust will strongly influence such parameters as Sr, Nd and Pb isotopic compositions. Such data strongly indicate the involvement of crustal rocks in locales underlain by old sialic crust (e.g., central Andes). Depending upon the level of magma stagnation and evolution within the crust, different trends in isotopic composition may result. These isotopic trends may be enhanced by partial melting of the wall rocks to produce relatively silicic anatectic magmas, and locally they may reflect subduction of continental sediments. Interpretation of the isotopic data may be more ambiguous in locales underlain by younger and more mafic continental crust (Cascades, E Eleutians) and those underlain by oceanic crust owing to the similarity in isotopic composition of primary magmas and the latter crustal materials. Yet some degree of crustal involvement in magmatic evolution seems highly probable even in these more primitive terranes. Consequently, most island arc magmas, and especially those more evolved than basalt, are probably not primary in the sense that they do not represent direct melts of the upper mantle. Studies of arc volcanic rocks may yield misleading conclusions concerning processes of magma generation related to subduction unless evolutionary processes are defined and their effects considered. It appears that modern volcanic arcs provide a poor analog for models of early crustal development because the modern mantle-derived magmatic components are more mafic in composition than average continental crust.  相似文献   

4.
Specific features of the bottom topography structure and the character of morphostructural segmentation of the rift zone of the Reykjanes Ridge change substantially along the ridge strike with increasing distance from Iceland’s hotspot. A clearly pronounced regularity of changes is observed in the rift zone’s morphology from the axial uplift (in the northern part of the ridge) to the rift valleys (in the southern part of the ridge) through an intermediate or transitional type of morphology. The results of numerical modeling showed that changes in the rift zone’s morphology along the Reykjanes Ridge strike are largely caused by changes in the degree of mantle heating and depend on the intensity of magma supply. It is shown that under conditions of ultraslow spreading, it is these parameters that control the presence or absence of crustal magma chambers, as well as the thickness of the effectively-elastic layer of the axial lithosphere. The experimental modeling of topography-forming deformations and structuring on the Reykjanes Ridge showed that under oblique extension, specific features of the formation of axial fractures and the character of their segmentation mainly depend on the thickness of the axial lithosphere, its heating zone width, and the kinematics of spreading. The experiments also showed that the tendency of fractures to develop obliquely to the extension axis is caused by the action of the inclined zone of the location of the deformation, and shear deformations play a substantial role in the lithosphere’s destruction as the inclination angle increases.  相似文献   

5.
Back-arc basin basalt systematics   总被引:7,自引:0,他引:7  
The Mariana, east Scotia, Lau, and Manus back-arc basins (BABs) have spreading rates that vary from slow (<50 mm/yr) to fast (>100 mm/yr) and extension axes located from 10 to 400 km behind their island arcs. Axial lava compositions from these BABs indicate melting of mid-ocean ridge basalt (MORB)-like sources in proportion to the amount added of previously depleted, water-rich, arc-like components. The arc-like end-members are characterized by low Na, Ti and Fe, and by high H2O and Ba/La; the MORB-like end-members have the opposite traits. Comparisons between basins show that the least hydrous compositions follow global MORB systematics and an inverse correlation between Na8 and Fe8. This is interpreted as a positive correlation between the average degree and pressure of mantle melting that reflects regional variations in mantle potential temperatures (Lau/Manus hotter than Mariana/Scotia). This interpretation accords with numerical model predictions that faster subduction-induced advection will maintain a hotter mantle wedge. The primary compositional trends within each BAB (a positive correlation between Fe8, Na8 and Ti8, and their inverse correlation with H2O(8) and Ba/La) are controlled by variations in water content, melt extraction, and enrichments imposed by slab and mantle wedge processes. Systematic axial depth (as a proxy for crustal production) variations with distance from the island arc indicate that compositional controls on melting dominate over spreading rate. Hydrous fluxing enhances decompression melting, allowing depleted mantle sources just behind the island arc to melt extensively, producing shallow spreading axes. Flow of enriched mantle components around the ends of slabs may augment this process in transform-bounded back-arcs such as the east Scotia Basin. The re-circulation (by mantle wedge corner flow) to the spreading axes of mantle previously depleted by both arc and spreading melt extraction can explain the greater depths and thinner crust of the East Lau Spreading Center, Manus Southern Rifts, and Mariana Trough and the very depleted lavas of east Scotia segments E8/E9. The crust becomes mid-ocean ridge (MOR)-like where the spreading axes, further away from the island arc and subducted slab, entrain dominantly fertile mantle.  相似文献   

6.
A geochemical and isotope-geochemical (Sr-Nd-Pb) study has been carried out for the Karacada? neovolcanic area, which is situated within the frontal part of the Arabian plate. The obtained data and the results of petrological modeling show that the petrogenesis of parental magmas in the Karacada? neovolcanic area involved two compositionally different mantle sources; one consisted of garnet-bearing peridotites of the asthenosphere mantle and the other was spinel-bearing peridotites of the enriched subcontinental lithosphere mantle. During early stages in the evolution of the magmatic system, deep-seated asthenospheric magmas were ascending to the surface while intensively interacting with the melts that had been generated at upper mantle depths. The interaction gradually diminished, so that the later effusive rocks mostly have compositions that are similar to those of the primitive asthenospheric magmas. It is shown that a significant (up to 17–18 wt % of the mantle melt) assimilation of crustal material could take place only during the initial phases of the magmatism. Periodic replenishment of the magma chambers by primitive magmas, which resulted in an observable high degree of homogeneity in the composition of young effusive rocks, was also of importance in the petrogenesis of lavas during the evolution of volcanic activity.  相似文献   

7.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

8.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

9.
Dapeng Zhao 《Island Arc》2001,10(1):68-84
Abstract There have been significant advances in the theory and applications of seismic tomography in the last decade. These include the refinements in the model parameterization, 3-D ray tracing, inversion algorithm, resolution and error analyses, joint use of local, regional and teleseismic data, and the addition of converted and reflected waves in the tomographic inversion. Applications of the new generation tomographic methods to subduction zones have resulted in unprecedentedly clear images of the subducting oceanic lithosphere and magma chambers in the mantle wedge beneath active arc volcanoes, indicating that geodynamic systems associated with the arc magmatism and back-arc spreading are related to deep processes, such as the convective circulation in the mantle wedge and deep dehydration reactions in the subducting slab. High-resolution tomographic imagings of earthquake fault zones in Japan and California show that rupture nucleation and earthquake generating processes are closely related to the heterogeneities of crustal materials and inelastic processes in the fault zones, such as the migration of fluids. Evidence also shows that arc magmatism and slab dehydration may also contribute to the generation of large crustal earthquakes in subduction regions.  相似文献   

10.
Erciyes stratovolcano, culminating at 3917 m, is located in the Cappadocian region of central Anatolia. During its evolution, this Quaternary volcano produced pyroclastic deposits and lava flows. The great majority of these products are calc-alkaline in character and they constitute Kocdag and Erciyes sequences by repeated activities. Alkaline activity is mainly observed in the first stages of Kocdag and approximately first-middle stages of Erciyes sequences. Generally, Kocdag and Erciyes stages terminate by pyroclastic activities. The composition of lavas ranges from basalt to rhyolite (48.4–70.5 wt.% SiO2). Calc-alkaline rocks are represented mostly by andesites and dacites. Some compositional differences between alkaline basaltic, basaltic and andesitic rocks were found; while the composition of dacites remain unchanged. All these volcanics are generally enriched in LIL and HFS elements relative to the orogenic values except Rb, Ba, Nb depleted alkaline basalt. 87Sr/86Sr and 143Nd/144Nd isotopic composition of the volcanics range between 0.703344–0.703964, 0.512920–0.512780 for alkaline basalts and change between 0.704322–0.705088, 0.512731–0.512630 for alkaline basaltic rocks whereas calc-alkaline rocks have relatively high Sr and Nd isotopic ratios (0.703434–0.705468, 0.512942–0.512600). Low Rb, Ba, Nb content with high Zr/Nb, low Ba/Nb, La/Yb ratio and low Sr isotopic composition suggest an depleted source component, while high Ba, Rb, Nb content with high La/Yb, Ba/Nb, low Zr/Nb and low 87Sr/86Sr ratios indicate an OIB-like mantle source for the generation of Erciyes alkaline magma. These elemental and ratio variations also indicate that the different mantle sources have undergone different degree of partial melting episodes. The depletion in Ba, Rb, Nb content may be explained by the removal of these elements from the source by slab-derived fluids which were released from pre-collisional subduction, modified the asthenospheric mantle. The chemically different mantle sources interacted with crustal materials to produce calc-alkaline magma. The Ba/Nb increase of calc-alkaline samples indicates the increasing input of crustal components to Erciyes volcanics. Sr and Nd isotopic compositions and elevated LIL and HFS element content imply that calc-alkaline magma may be derived from mixing of an OIB-like mantle melts with a subduction-modified asthenospheric mantle and involvement of crustal materials in intraplate environments.  相似文献   

11.
The unusual petrological diversity of abyssal lavas erupted along some segments of the Galapagos spreading center is a direct consequence of the propagation (elongation) of these segments into older oceanic crust. With increasing distance behind propagating rift tips, relatively unfractionated MORB erupted close to the tips are joined first by FeTi basalts (bimodal assemblage) and then by a wide range of basaltic and siliceous lavas. Further behind propagating rift tips, this broad range diminishes again, approaching the narrow compositional range of adjacent normal ridge segments.These compositional variations reflect the evolution of the subaxial magmatic system beneath the newly forming spreading center as it propagates through a pre-existing plate. We envisage this evolution as proceeding from small, isolated, ephemeral magma chambers through increasing numbers of larger, increasingly interconnected chambers to the steady-state buffered system of a normal ridge. Throughout this evolution, magma supply rates gradually increase and cooling rates of crustal magma bodies decrease. High degrees of crystal fractionation are favored only when a delicate balance between cooling rate and resupply rate of primitive magma is achieved.At other propagating and non-propagating ridge-transform intersections the degree to which the balance is achieved and the length of ridge over which it evolves control the distribution of fractionated lavas. These effects may be evaluated provided a number of tectonic variables including transform length, spreading and propagation rates are taken into account.  相似文献   

12.
The magma evolution of Tianchi volcano, Changbaishan   总被引:4,自引:0,他引:4  
The Changbaishan Tianchi volcano is composed of the basaltic rocks at the shield-forming stage, the trachyte and pantellerite at the cone-forming stage and modern eruption. Studies on their REE, incompatible elements and Sr, Nd, Pb isotopes suggest that rocks at different stages have a common magma genesis and close evolution relationship with differentiation crystallization playing the key role. The co-eruption of basaltic trachyandesite magma and pantellerite magma indicates that there exist both crustal magma chamber and mantle magma reservoir beneath the Tianchi volcano. Project supported by the National Natural Science Foundation of China (Grant No. 49672109).  相似文献   

13.
Major and trace element along with representative Sr, Nd and Pb isotope data are presented for drill core samples which intersect an 800 m lava pile in eastern Uruguay. The lavas form part of the Paraná flood basalt province, are low-Ti in composition but distinct from the low-Ti Gramado magma type, and have been termed the Treinte Y Trés magma type. The lava pile overlies a large positive gravity anomaly inferred to reflect an east–west trending, mid-crustal mafic intrusive body with a calculated volume of 35,000 km3. Smooth up-section compositional variations in the basalts are interpreted to record magma evolution within this mid-crustal magma chamber. 87Sr/86Sr and 206Pb/204Pb increase throughout the sequence yet Mg remains relatively constant in the lower 200 m of the sequence, suggesting a role for magma chamber recharge. Above this the lavas show a regular, up-section decrease in Mg coupled with increasing 87Sr/86Sr and 206Pb/204Pb and this is interpreted to reflect crystal fractionation combined with crustal contamination. The data provide further evidence that contamination of flood basalt magmas in crustal magma chambers is a common phenomenon and calculations suggest that the amount of crustal addition may be as high as 60–70%. Nevertheless, the effects of this crustal contamination do not appear able to account for the discrepancy between key incompatible trace element ratios and isotope ratios of the lavas and those of any putative mantle plume. In fact, La/Ta decreases with decreasing Mg and increasing 87Sr/86Sr indicating that the effects of crustal contamination were actually to reduce La/Ta and implying that the parental magmas had very high La/Ta (90). These constraints are clearly inconsistent with an asthenospheric origin for the parental magmas and so, consistent with mass balance calculations, it is inferred that they were derived from the lithospheric mantle.  相似文献   

14.
Inception of volcanism at late Oligocene to Recent centers in the eastern Coast Ranges of California (ECR suite) regularly decreases in age northward and is correlated with the northward migration of the transform-transform-trench Mendocino triple junction (MTJ). Miocene volcanism in the southern California basin (SCB suite) is spatially and temporally associated with the transform-ridge-trench Rivera triple junction (RTJ). The tholeiitic to calc-alkaline rocks in both suites were erupted through older trench melange while arc magmatism was occurring several hundred kilometers to the east. Therefore they are not related to subduction zone magmatism, but instead to interactions of the MTJ and RTJ with the continental margin.The ECR rocks, dominantly intermediate to silicic in composition, have relatively high δ18O values up to 11.3, 87Sr/86Sr ratios up to 0.7055, as well as relatively high Th contents, suggesting that crustal anatexis played a dominant role in their generation. Coupled crystal fractionation and crustal assimilation by an initially basaltic magma cannot explain the high δ18O values and 87Sr/86Sr ratios because greater than 95% of the basalt would need to crystallize. In contrast, the SCB rocks, dominantly mafic to intermediate in composition, have relatively low δ18O values down to 5.2 and 87Sr/86Sr ratios down to 0.7025 suggesting that these rocks were derived dominantly from a mantle source.Whether crustal anatexis occurs is determined largely by the type of stress a triple junction imposes upon the continental margin. Both the MTJ and RTJ are associated with high heat flow and magma fluxes from the mantle. The transform-transform-trench MTJ is associated with locally variable mild extension to compression and therefore allows pooling of basaltic magma in the crust to initiate crustal melting. The high rates of continental extension associated with the transform-ridge-trench RTJ prevents such pooling of magma.The space created by decoupling of the subducted slab at a transform-transform-trench triple junction might promote passive upwelling of mantle material to fill it and induce melting to generate basalts. Mafic volcanic rocks of this origin may provide a unique view of the subcontinental mantle at the continental margin. 87Sr/86Sr ratios as low as 0.70255 for mafic volcanic rocks in the Sonoma-Tolay center associated with the MTJ contrast with high La/Sm ratios of 1.1 to 1.3 and low Zr/Nb,Hf/Ta,La/Th, and La/Ta ratios of 5.0 to 6.7, 2.6 to 3.5, 4.7 to 8.8, and 10.2 to 12.5, respectively. These data suggest that the mantle beneath parts of western California may have originally been depleted but has been enriched relatively recently. Such enrichment might have occurred by metasomatic processes associated with crustal accretion and/or juxtaposition of differing lithospheric mantle in the Mesozoic and Cenozoic.  相似文献   

15.
Calc-alkalic chemical trends characteristic of arc volcanic rocks mainly result from three mechanisms which act additively: (1) fractional crystallization involving separation of titanomagnetite; (2) selective concentration of plagioclase phenocrysts and selective depletion of titanomagnetite phenocryst compared with the actually fractionated proportion; and (3) mixing of magmas on continuous fractionation trends. The association of calc-alkalic and tholeiitic trends in a single composite volcano may not represent different fractional crystallization processes or different chemistries of primary magmas, but the calc-alkalic chemical trend can be considered as a mixing trend resulting from mixing of various magmas on associated tholeiitic chemical trends. Chemical variations of most arc volcanic rocks, including calc-alkalic ones, can accordingly be essentially accounted for by the low-pressure fractional crystallization of phenocrystic phases from primary basaltic magmas.Crystallization sequences of arc magmas which are strongly dependent on water content in magmas are deduced from the phenocryst assemblages. The crystallization sequence changes laterally across-arc, suggesting increasing water contents in magmas toward the back-arc side, as is also seen for other incompatible elements such as K and Rb. Systematic differences in the characteristic crystallization sequence are also observed among arcs, roughly correlating with the crustal thickness. Water content in magma, like other incompatible elements, tends to increase with increasing crustal thickness. The variation of incompatible elements including water roughly represents that of the degree of partial melting of the upper mantle, which is broadly controlled by the crustal thickness.The variation of water content indicates that arc magmas are not saturated with water during differentiation to late differentiates such as dacite or rhyolite. This strongly constrains the maximum water contents in primary basaltic magma, at most 2.5 wt.%. This value suggests that magma generation beneath arcs is dependent on dry solidus of peridotite. Diapiric uprise of the hot deeper mantle and associated adiabatic decompression would be necessary for mantle peridotite to attain the temperature as high as dry solidus. Diapirs that begin to rise from the subduction zone may stop at or near the crust-mantle boundary because of the surrounding density change, and their degree of partial melting is roughly controlled by their stopped depth assuming their similar temperature. Across-arc variation is also explained by the stopped depth of diapirs, but is not controlled by crustal thickness.  相似文献   

16.
Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites.87Sr/86Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and143Nd/144Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obvious crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series.The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration.  相似文献   

17.
超慢速扩张西南印度洋中脊岩浆的集中供给在空间维度上表现为岩浆扩张段(NVR)与相邻的非转换断层不连续带(NTD)地壳结构的差异,而在时间维度上表现为离轴与沿轴地壳结构的差异.为了进一步揭示岩浆集中供给的时空分布特征,本文选取西南印度洋中脊热液区2010年海底地震仪深部探测中平行于洋中脊距轴部偏北约10 km的离轴测线d0d10,使用射线追踪正演和反演的方法,得到了NVR和NTD北侧离轴区域的地壳及上地幔P波速度结构,并与轴部速度结构进行了对比分析.研究结果表明:(1)NTD北侧离轴区域的地壳厚度约5.2 km,其厚度明显大于轴部NTD下方地壳厚度(~3.2 km),由此推测洋脊轴部NTD区域形成的地壳在不断减薄;(2)NVR北侧离轴区域的地壳厚度约7.0 km,其厚度亦大于轴部NVR地壳厚度(~5.8 km),表明在洋中脊演化过程中洋脊轴区域的岩浆供给在不断减少,其活动性在不断减弱.  相似文献   

18.
The trachytic volcanoes of San Miguel Island are emplaced on either side of a young basaltic area, which could correspond to some active branch of the mid-Atlantic rift. Geological and geomagnetic surveys suggest crustal drift of about 1 cm/year on either direction. From the seismic anomaly data, shallow magma chambers have been inferred for those acid volcanoes, where owing to the crustal drift the main vents appear to have been shifted relatively to the fractures feeding the chambers from the deep upper mantle supply. The primitive magma is certainly basaltic; when the surface vents are directly above the deep feeding fractures, only basaltic lavas of some primitive composition can be extruded; but, when the upper vents are laterally displaced, the magma is delayed in the chambers and will differentiate, eventually into trachytic material capable of producing huge pumice explosions.  相似文献   

19.
A numerical model describing the thermomechanical state of the “cold” upper mantle near a mid-oceanic ridge (MOR) spreading at a moderate rate is constructed in the approximation of the boundary layer theory. The condition of rift valley formation leads to a constraint on the temperature and shows what temperature distribution corresponds to the “cold” upper mantle. Taking into account the dependence of mantle rheology on the pressure, temperature, and viscous stresses, the model distributions of the pressure and normal viscous stresses at the base of the lithosphere result in a bend of the heterogeneous lithosphere near the MOR, producing a seafloor topography typical of a rift valley with a depth of a few hundred meters and a spreading rate of ~2.5 cm/yr, characteristic of the Atlantic Ocean. The model width of the rift valley (~10–15 km) agrees with observations fairly well. The model is consistent with the typical heat-flow values observed in the spreading zone.  相似文献   

20.
—We investigate the distribution of partial melt in island arc using the seismic velocity structure of the mantle wedge beneath northeastern Japan. The comparison of the seismic tomography with laboratory velocity data on a partially-molten mantle rock yields estimates of melting zones in three dimensions. We employ experimental data on the degree of partial melt in hydrous peridotite to give constraints on the melt fraction and temperature. Melting and magma-rich zones derived from the velocity structure coincide with observed low Q zones. The results of the three-dimensional mapping indicate that the source of magma in island arc is diapir-like melting patches localized within the low velocity zones of the mantle wedge. Extensive volcanic activity along the volcanic front is due to the presence of vast magma-rich zones just beneath the Moho. Those melting zones in the uppermost mantle may, in turn, cause melting of lower crustal materials and produce felsic magma. Melt appears to stay at and beneath the Moho, where crystallization fractionation may proceed. Melt exists at greater depths in the back-arc region, which may correlate with across-arc variations of chemical compositions of the volcanic rocks observed in northeastern Japan. We suggest that magma migration in the ductile lower crust may cause low-frequency microearthquakes, and magma penetration into the brittle upper crust may produce mid-crustal S-wave reflectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号