共查询到20条相似文献,搜索用时 15 毫秒
1.
The Jiaozhou Bay is a semi-enclosed bay, Qingdao, China. More than 10 rivers enter the bay, of which most take wastes from industrial and household discharges. According to historical seasonal investigations in May, August, November 1979, the content, distribution, and development of heavy metal mercury are analyzed as a historical reference. Water samples were taken from the surface and bottom. The results revealed clear seasonal and regional changes in both horizontal and vertical directions, and close relation with major discharging rivers and plankton production. The seawater was polluted more seriously in spring than in any other seasons. However, it was the cleanest in winter during which least waste was input with low plankton production. According to historical data, the state of mercury pollution in seawater was worsening in the period, and has been improving in recent years. Terrestrial contamination was the main reason for mercury pollution in the bay. 相似文献
2.
Acid volatile sulfide and simultaneously extracted metals in tidal flat sediments of Jiaozhou Bay,China 总被引:1,自引:0,他引:1
ZHANG Xiangshang ZHANG Longjun 《中国海洋大学学报(英文版)》2007,6(2):137-142
It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously extracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water. 相似文献
3.
The land-sourced pollution in the Jiaozhou Bay 总被引:2,自引:0,他引:2
In recent years, natural environment of the Jiaozhou Bay has been changed largely by fast developing industry and agriculture of the cities around, from which wastewaters were generated. The size of the bay has been continuously shrunk with reduced river flows, resulting in serious contamination to the marine lives in the bay. After analyzing the basic historical data, the authors put forward a suggestion of how to protect the bay ecology for sustaining the resources in the Jiaozhou Bay. 相似文献
4.
The species composition and abundance of microzooplankton at 10 marine and five coastal stations(Hongdao,Daguhe,Haibohe,Huangdao and Hangxiao) in the Jiaozhou Bay(Qingdao,China) were studied in 2001.The microzooplankton community was found to be dominated by Tintinnopsis beroidea,Tintinnopsis urnula,Tintinnopsis brevicollis and Codonellopsis sp.The average abundance of microzooplankton was highly variable among stations.Specifically,the abundance of microzooplankton was higher at inshore stations and lower ... 相似文献
5.
Accumulation of petroleum hydrocarbons and heavy metals in clams (Ruditapes philippinarum) in Jiaozhou Bay, China 总被引:2,自引:0,他引:2
Accumulation and distributions of aliphatic and polyaromatic hydrocarbons (PAHs) and heavy metals were measured in tissues
of the clam Ruditapes philippinarum collected from 5 sites in Jiaozhou Bay, Qingdao, China. The concentrations of total aliphatic hydrocarbon and PAHs ranged
from 570 to 2 574 ng/gdw (gram dry weight) and from 276 to 939 ng/gdw, in the most and least polluted sites, respectively.
The bio-accumulation of hydrocarbons and PAHs in the clams appeared to be selective. Aliphatic hydrocarbons were predominantly
represented by short chain (<nC23) n-alkanes, suggesting that petroleum hydrocarbons were likely the major contamination source. The selective uptake of 3 and
4 ring PAHs, such as naphthalene, fluorene, phenanthrene, fluoranthene and pyrene, by the clams was probably related to the
physiological and bio-kinetic processes that were energetically favorable for uptake of compounds with fewer rings. Accumulation
of the metals Cd, Cu, Zn, Pb, Cr, Hg, and As in the clam tissues also showed high variability, ranging from 0.043 to 87 μg/gdw.
Among the 7 detected metals, Zn, Cd, Cu, and As had a particularly high potential of accumulation in R. philippinarum. In general, a positive correlation was found between the tissue concentrations and sediment concentrations of hydrocarbons
and of some metals. Our study suggests that moderate contamination with polyaromatic hydrocarbons, and low to moderate contamination
with metals, currently exists for clam R. philippinarum in Jiaozhou Bay, in comparison with other regional studies. A long-term monitoring program is certainly needed for assessment
of the potential ecological influence and toxicity of these contaminants of R. philippinarum in Jiaozhou Bay. 相似文献
6.
The distributions of thickness of unconsolidated Quaternary sedimentary layers in Jiaozhou Bay and Qingdao offshore area were studied by using 1079-km high-resolution shallow seismic profiles and drilling core data, and the factors controlling the Quaternary evolution were discussed. The results show that such thickness distributions resulted from the coactions of geologic structures and marine hydrodynamic conditions since the Holocene. The geologic structures controlled the slope deposit, proluvial and fluvial fillings since the late Pleistocene. Holocene marine hydrodynamics eroded away sediments at the bay mouth, and tides carried these eroded materials to the sides of the bay mouth and released them there, forming channel-ridge-alternating geomorphic features. During transgressive processes, the sea level rose rapidly, and insufficient sediment supply and tidal actions yielded the relict sediments in the east of Qingdao offshore area. 相似文献
7.
This study on the temporal and spatial variability of the viscosity and some chemical parameters in the sea surface microlayer (SML), the relationship between the viscosity and chemical parameters, and the influence of the viscosity on the mass transfer coefficient (K) in the flux of materials through the air-sea interface revealed that: The values of viscosity and some chemical parameters in the SML are higher than those in the sub-surface layer (SSL), and at daytime are higher than those at night. The viscosity has positive corelation with chemical oxygen demand (COD),dissolved organic carbon (DOC) and salinity. The “SML effect“ on K need not be considered because the SML effect on materials concentration is so small. 相似文献
8.
Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%-70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es. 相似文献
9.
AMMONIUM UPTAKE AND REGENERATION FLUXES OF THE MICROPLANKTON COMMUNITIES IN JIAOZHOU BAY 总被引:3,自引:0,他引:3
The results from four cruises(Nov.1991—Jul.1992)to examine fluxes of ammonium uptake andregeneration in the surface layer of Jiaozhou Bay are presented.Seasonal variations of the two fluxeswere in the order:summer>spring>autumn>winter.Diel patterns were characterized by higher uptake inthe daytime and higher regeneration at night.Averaged uptake and regeneration fluxes on an annual scalewere 0.073 and 0.053 μmol·L~(-1)·h~(-1)respectively.Regeneration fluxes were always less than uptakefluxes throughout the year.The longest turnover time was 16.34 d(in winter),and the shortest one was0.68 d(in summer).The major uptake flux was contributed by the smallest fraction-picoplankton.Theextents of light-dependence of ammouium uptake by different size fractions were in the order:netplankton>nanoplankton>picoplankton.. 相似文献
10.
Three new spades and a new variety of nannoplankton, Chrysochromulina papillata, Gaysochromulina chiton var. minuta, Paraphysomonas simplexocorbita and Paraphysomonas bisorbulina are reported in this paper. All were isolated from the preliminary culture samples of seawater collected from Jiaozhou Bay, Shandong, China. The three species occurred at Station 1(120° 14.56′ E, 36°4′N) in November 1984, the new variety at Station 2 (120° 16.35° E,36°4.5′N) in January, 1985. The morphological features, especially the structures of the scales of these new nannoplankton,. are described. The differences between the new species and the related ones are discussed; their movement and nutrition, and the temperature and salinity of their biotopes are also mentioned. 相似文献
11.
Silicon limitation on primary production and its destiny in Jiaozhou Bay, China——Ⅳ:Study on cross-bay transect from estuary to ocean 总被引:1,自引:0,他引:1
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12
seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay.
The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration
there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the
silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and
deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly
be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical
processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus
silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting
certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the
silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided
into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions,
so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary
production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate.
Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon
depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages
in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the
river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production.
These results proved further that nutrient silicon is a limiting factor for phytoplankton growth.
This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic
Administration. 相似文献
12.
TIAN Shengyan ZHANG Zhinan LIU Xiaoshou and YU Zishan College of Marine Life Sciences Ocean University of China Qingdao P.R.China Tianjin University of Science Technology Tianjin P.R.China 《中国海洋大学学报(英文版)》2006,5(1)
The abundance and biomass of benthic heterotrophic bacteria were investigated for the 4 typical sampling stations in the northern muddy part of Jiaozhou Bay, estuary of the Dagu River, raft culturing and nearby areas of Huangdao in March, June, August and December, 2002. The abundance and biomass range from 0.98×107 to 16.87×107cells g-1 sediment and 0.45 to 7.08μgCg-1 sediment, respectively. Correlation analysis showed that heterotrophic bacterial abundance and biomass are significantly correlated to water temperature (R =0.79 and 0.83, respectively, P<0.01). 相似文献
13.
We used long term monitoring data to evaluate changes in abundance and species dominance of small-jellyfish (collected with zooplankton net whose bell diameter was less than 5 cm) between 1991 and 2009 in the Jiaozhou Bay, China. Zooplankton samples were vertically towed with conical plankton net from near-bottom to surface, identified microscopically, and mapped in time-space using Grapher 7.0 and Surfer 8.0. Results show that the abundance of small-jellyfish throughout the bay had been increasing during 2001-2009 on average of 15.2 ind./m 3 , almost 5 times higher than that between 1991 and 2000. The occurrence of peak abundance shifted from spring to summer after 2000, and two peaks appeared in spring and summer, respectively, after 2005. Both the abundance and the frequency of blooms of small-jellyfish increased after 2000 in the bay. In addition, the biodiversity of jellyfish has increased significantly in recent years with a change in dominant species. Several new dominant species appeared after 2000, including Rathkae octopunctata in winter, Phialidium hemisphaericum in spring, summer, and autumn, Phialucium carolinae in spring, and Pleurobrachia globosa in summer and autumn, while some previous dominant species throughout the 1990s (Eirene ceylonensis, Zanclea costata, Lovenella assimilis, and Muggiaea atlantica) were no longer dominant after 2000. The abundance of small-jellyfish was positively correlated with the density of dinoflagellates, and the abundance of zooplankton. We believe that the changes in smalljellyfish abundance and species composition were the result of eutrophication, aquaculture and coastal construction activities around the bay. Concurrently, seawater warming and salinity decrease in recent decades promoted the growth and reproduction of small-jellyfish in the bay. 相似文献
14.
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 (12 seasonal investigations) provided
by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration
Si∶DIN and Si∶16P ratios and the seasonal variation of Jiaozhou Bay Si∶DIN and Si∶16P ratios showing that the Si∶DIN ratios
were <1 throughout the year in Jiaozhou Bay; and that the Si∶16P ratios were <1 throughout Jiaozhou Bay in spring, autumn
and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis
of the Si∶DIN and Si∶P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year
in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure.
Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in
that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn
and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species
need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N
and P nutrients and DIN∶P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute
and relative limitation fully support this view.
The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton
growth process in the ecological system in estuaries, bays and the sea.
The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes
the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly
decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole
ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the
capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem.
This study was funded by the NSFC (No. 40036010) and subsidized by Special Funds from the National Key Basic Research Program
of P. R. China (G199990437), the Postdoctoral Foundation of Ocean University of Qingdao, the Director's Foundation of the
Beihai Monitoring Center of the State Oceanic Administration and the Foundation of Shanghai Fisheries University. 相似文献
15.
The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area. 相似文献
16.
In this study, we used Landsat images and meteorological data to examine the spatiotemporal distribution and variability of sea ice in Jiaozhou Bay(JZB) between 1986 and 2016. The results show that JZB is not always covered by sea ice in winter, but in some extreme cases, sea ice has covered more than one-third of the sea area of the bay. Sea ice in JZB has generally formed between January 1 and February 5, primarily along the coast, and gradually expanding to the central area of the bay. Both meteorological and artificial factors have played important roles in modulating the sea ice distribution. We found sea ice coverage to have been strongly correlated with the accumulated freezing-degree days nine days before the occurrence of sea ice(R2 = 0.767). North-northwest surface winds have dominated the freezing period of sea water in the JZB, and wind speed has exerted a more significant influence on the formation of sea ice when the sea ice coverage has been generally small. Additionally, artificial factors began to affect the expansion of sea ice in JZB since 2007. The construction of the Jiao-Zhou-Bay Bridge(JZBB) is believed to have retarded water flow and reduced the tidal prism, thereby leading to the formation of an ice bridge along the JZBB, which effectively prevents the southward expansion of sea ice. 相似文献
17.
Chemical characterization and composition of dissolved organic matter in Jiaozhou Bay 总被引:1,自引:0,他引:1
Biologically utilizable dissolved organic compounds, including dissolved organic carbon (DOC), dissolved carbohydrates (DCHO)
and dissolved free amino acids (DFAA) were analyzed in filtered surface seawater samples collected at 19 stations in Jiaozhou
Bay, China, on June 3, 2007. In these samples, concentrations of DOC, dissolved free carbohydrates (DFCHO), dissolved combined
carbohydrates (DCCHO), total dissolved carbohydrates (TDCHO) and total dissolved free amino acids (TDFAA) ranged from 141.7
to 191.1 μmol C/L, 1.98 to 18.18 μmol C/L, 5.04 to 24.90 μmol C/L, 14.52 to 30.36 μmol C/L, and 1.83 to 11.89 μmol C/L, respectively.
As a major component of the dissolved carbohydrates, the concentrations of DCCHO were about three times higher than those
of DFCHO. Three major constituents of the DFAA were threonine (23.0±5.7 mol%), glutamic acid (16.6±3.2 mol%) and arginine
(9.1±3.3 mol%). Based on the composition of DFAA, a molar C:N ratio of 3.60±0.75 in DFAA was derived, indicating longer carbon
chains in the amino acids. DCCHO (8.1%) was the most abundant fraction of DOM in most samples, followed by DFCHO (4.8%) and
TDFAA (2.7%). These DOM concentrations displayed a decreasing trend from the coast to the central region. Significant correlations
were found between the DCCHO and DFCHO concentrations (r=-0.724, n=19, P<0.001) and the DCCHO and TDCHO concentrations (r=0.506, n=19, P=0.027). 相似文献
18.
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO3^--N, NO2^--N, NH4^ -N, SIO3^2--Si, PO4^3--P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq. ( 1 ) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature‘s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant-nutrient concentTations but low phytoplankton biomass in some waters is reasonably explained in this paper. 相似文献
19.
1 INTRODUCTION Bioavailability to the biota and the biogeo-chemistry of trace metals in marine environment areaffected by their chemical speciation in the naturalsystem (Bruland et al., 1991; Van den Berg andDonat, 1992; Wells et al., 1998). Therefore, thesetwo parameters, the ligands concentrations andconditional stability constants, are important todetermine the complexing capacity. Sea surface microlayer (SML), the thin interfa-cial boundary between ocean and atmosphere, playsan imp… 相似文献
20.
1INTRODUCTIONMicrozooplanktonsizecategoryiscomposedofdi versetaxonomicassemblages,includingplanktonicpro tozoa,larvalandnaupliarstagesofmetazoa(Gifford,1 988) .Microzooplanktonconstituteasignificantpro portionoftotalzooplanktonbiomassinavarietyofneri ticandoceanicenvironmentsandplayimportantrolesinplanktonicfoodwebs(FronemanandPerissinotto,1 996;Gallegos,1 989) .Severalmethodsforresearchonmi crozooplanktongrazingpressureonphytoplanktonwerereviewedbyMcManusandFuhrman (1 988)andGifford(1… 相似文献