首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1 Introduction TheindicesfortheAsianmonsoonhavebeenstud iedinmanyworks .Recently ,thechoiceofpropermonsoonindiceshasreceivedexceptionalattentionandraisedcontroversy (WebsterandYang ,1 992 ;Goswa mietal.,1 999;Goswami,2 0 0 0 ;Wang ,2 0 0 0 ) .Us ingzona…  相似文献   

2.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

3.
mODUCnONTheSOuthChinaSea(SCS)isasend-enclosedoceanbasinlocatednearthewesternPeripheryofthePacificOcean.SpreadingfIDmtheeqUatorto20"Nands~ngzonallaboutl5'inlooptUde,theSCSlocatesbetweenthesouthChinacoastandtheInaritha6continent,andissurroundedbyInanislandcountries.Duringwinter,S0UthwwhmedngcoldSUrges,mwhfiedbytheSST,affectthepressure,tempethe,andwindfieldsneartheInaritimecontinent,andsomeInayeveninIluencetheS0uthernHdrispheremonsoon(Davids0netal.,1983).msuniqUegeOpophyoftheSCS…  相似文献   

4.
INTRODUCTIONTheSouthChinaSea(SCS)isapartly enclosedoceanbasinoverlaidbyapronouncedmonsoonsurfacewind .Paststudies (Chenetal.,1 991 ;DingandMurakami,1 994 ;Yan ,1 997;LiangBiqi,1 991 ;LiangJianyin ,1 991 )indicatethatahugewarmwaterpooljointlycontributedbythewesternPacific ,ea…  相似文献   

5.
Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data,we analyzed the reversal process of the South China Sea(SCS) western boundary current(SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process.Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month.During the SCS monsoon reversal period,the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September.Subsequently,the southward Vietnam coastal boundary current strengthened.However,the northward Natuna Current maintained a summer state until mid-October.Thus,the balance between the southward and northward currents was lost when they met,their junction moved gradually southward.However,a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current(VOC) remained near its original latitude.Meanwhile,the VOC and associated dipole circulation system strengthened.After midOctober,the northward Natuna Current began to weaken,the loop current finally shed,becoming a cool ring.The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.  相似文献   

6.
An ENSO-like oscillation system   总被引:4,自引:0,他引:4  
INTRODUCTIONElNi no SouthernOscillation (ENSO)istheinterannualinteractionofocean atmosphereinthetropical (especiallyequatorial)Pacific,andisconsideredtobethedominantmechanismoftheearth’sinterannualclimatechange.ThereareseveralparadigmsproposedforinterpretingENSO .Bjerknes’ (1 966,1 969)pio neeringworkvisualizedacloseassociationbetweenoceanandatmosphereandexplainedhowthedis turbancecoulddevelopthroughtheocean atmosphereinteraction .Heproposedapositivefeedbackmechanism .ButENSOisan…  相似文献   

7.
Multi-year SST and NCEP/NCAR reanalyzed wind data were employed to study the impacts of El Nino on the Southeast Asian summer monsoon(SEASM),It was found that the impacts of El Nino on the SEASM differed distinctly from those on the East Asian Summer monsoon (EASM) and the Indian summer monsoon(ISM).Composite analysis indicated that the “gear point“of coupling between the Indo-mosoon circulation and the Pacific-Walker circulation was located in the western margins of Southeast Asia when the developing stage of El Nino events covered the boreal summer.The anomalous circulations in the lower and upper troposphere and divergent circulation are all favorable for the strengthening of the SEASM during this period.Following the evolution of El Nino,the “gear point“ of the two cells shifted eastward to the central Pacific when the mature or decaying period of El Nino events covered the boreal summer.The anomalous circulations are favorable for the weakening of the SEASM ,The anomalous indexes of intenstity of SEASM accord well with the above resultsl.Additionally,the difference of SSTA patterns in the tropical In-do-Pacific OCean between the two stages of the El Nino may play an important role.  相似文献   

8.
INTRODUCTIONTaoandChen (1 987)werethefirsttopointoutthattheAsiansummermonsooniscomprisedoftwosystems:EastAsiansummermonsoon (EASM )andSouthAsiansummermonsoon (SASM) .Theyaredistinctlydifferentfromeachotherinbothlarge scalestructureandconstituentsubsystems.Ther…  相似文献   

9.
1 Introduction ShandongProvince ,whichislocatedintheeastofChina ,consistspartlyofpeninsulaandpartlyofinlandwithatotalareaofabout 1 5 0 0 0 0km2 .Lyingfrom34°2 0′Nto 38°2 0′Nandfrom 1 1 4°4 0′Eto 1 2 2°4 0′E ,alltheareabelongstothemoderateregionandtothetypicalAsianmonsoonclimate .SoShandong’ssum merprecipitationaccountsforover 6 0 %oftheannualrainfall,andaccordinglyflood droughtdisastersmain lyoccurinsummer.Moreover,becauseitisgeographi callylocatedinthetransitionalareabetweenthe…  相似文献   

10.
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.  相似文献   

11.
The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.  相似文献   

12.
INTRODUCTIONTheSouthChinaSea (SCS)isauniquesemi encloseddeepoceanbasinlocatednearthewest ernperipheryofthePacificOcean .Spreadingfromtheequatorto 2 0°Nandspanningzonallyabout1 5°N ,theSCSliesbetweentheSouthChinacoastandthemaritimecontinent.TheSCSbottomtopogr…  相似文献   

13.
To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.  相似文献   

14.
Liu  Zenghong  Chen  Xingrong  Sun  Chaohui  Wu  Xiaofen  Lu  Shaolei 《中国海洋湖沼学报》2017,35(3):712-721
Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(5 m/s) and columnar water vapor 28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.  相似文献   

15.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

16.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

17.
Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea(SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait(LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors(Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.  相似文献   

18.
Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coastal regions east and southeast of Vietnam (UESEV), east and southeast of Hainan Island (UESEH), and southeast of Guangdong province (USEG). It is shown that the Ekman transport due to alongshore winds and Ekman pumping due to offshore wind stress curl play different roles in the three upwelling systems. In UESEV, Ekman pumping and Ekman transport are equally important in generating upwelling. The Ekman transport increases linearly from 0.49 Sv in May to 1.23 Sv in August, while the Ekman pumping increases from 0.36 to 1.22 Sv during the same period. In UESEH, the mean estimates of Ekman transport and Ekman pumping are 0.14 and 0.07 Sv, respectively, indicating that 33% of the total wind-driven upwelling is due to Ekman pumping. In USEG, the mean Ekman transport is 0.041 Sv with the peak occurring in July, while Ekman pumping is much smaller (0.003 on average), indicating that the upwelling in this area is primarily driven by Ekman transport. In the summers of 2003 and 2007 following El Niño-Southern Oscillation (ENSO) events, both Ekman transport and Ekman pumping decrease in UESEV due to the abnormally weak southwest monsoon. During the same events, however, Ekman transport is slightly enhanced and Ekman pumping is weakened in UESEH and USEG.  相似文献   

19.
利用NECP/NCAR月平均再分析资料,研究1951~2010年夏季青藏高原主体大气热源分布、对东亚地区的环流影响及其与同期中国降水的关系.针对高原加热局地特征明显的特点,采用旋转经验正交函数等方法探讨不同类型的热源分布以及对东亚地区大气环流的影响.结果表明,当加热中心位于高原东南侧时,青藏高原夏季风加强,南亚高压偏南偏东,西太平洋副热带高压西伸加强,而东亚中高纬地区两脊一槽的经向环流分布形势明显,有利于中国长江流域的降水而不利于华南华北的降水发展.当加热中心位于高原中北部与西南地区时,青藏高原夏季风减弱,南亚高压偏西,西太副高明显偏东偏弱,中高纬环流的纬向特征明显,有利于中国地区北方降水而不利于南方地区的降水.  相似文献   

20.
Wave fi elds of the South China Sea(SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind fi eld datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon(April–September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon(December–March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height H s in SCS shows that in spring, H s ≥1 m in the central SCS region and is less than 1 m in other areas. In summer, H s is higher than in spring. During September–November, infl uenced by tropical cyclones, H s is mostly higher than 1 m. East of Hainan Island, H s 2 m. In winter, H s reaches its maximum value infl uenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号