首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Source parameters of the earthquakes of the Baikal rift system   总被引:1,自引:0,他引:1  
The dynamic parameters of the earthquake source—the seismic moment, the moment magnitude, the source radius, the stress drop, and the amplitude of displacement—are determined by the amplitude Fourier spectra of the body shear waves (S-waves) for 62 earthquakes of the Baikal rift system with the energy class of K P = 9.1–15.7. In the calculations I used the classical Brune model. The seismic moment of the earthquakes being investigated changes from 3.65 × 1011 N m to 1.35 × 1018 N m, and the radii of earthquake sources vary from 390 m to 1.84 km. The values of the drop in stress Δσ grow with an increase in the seismic moment up to 1.7 × 108 Pa. For the group of weak earthquakes (M w = 1.7–3.3), extremely low values of the drop in stress 103–104 Pa are observed. The maximum amplitude of displacement in the source amounts to 5.95 m. The empirical equations between the seismic moment and the other dynamic parameters of the source are determined. The regional dependence of the seismic moment and energy class is obtained: log M 0 ± 0.60 = 1.03K P + 3.17. The character of the relationship between the seismic moment and the corner frequency indicates that the classical scaling law of the seismic spectrum for the earthquakes in question is not fulfilled. The obtained estimates of the dynamic parameters are in satisfactory agreement with the published data concerning the analogous parameters of the other rift zones, which reflects the general regular patterns of the destruction of the lithosphere and the seismicity in the extension zones of the lithosphere.  相似文献   

2.
Fifty earthquakes that occurred in Hungary (central part of the Pannonian basin) with local magnitude $M_\textrm{L}$ ranging from 0.8 to 4.5 have been analyzed. The digital seismograms used in this study were recorded by six permanent broadband stations and 20 short-period ones at hypocentral distances between 10 and 327 km. The displacement spectra for P- and SH-waves were analyzed according to Brune’s source model. Observed spectra were corrected for path-dependent attenuation effects using an independent regional estimate of the quality factor Q S . To correct spectra for near-surface attenuation, the κ parameter was calculated, obtaining it from waveforms recorded at short epicentral distances. The values of the κ parameter vary between 0.01 and 0.06 s with a mean of 0.03 s for P-waves and between 0.01 and 0.09 s with a mean of 0.04 s for SH-waves. After correction for attenuation effects, spectral parameters (corner frequency and low-frequency spectral level) were estimated by a grid search algorithm. The obtained seismic moments range from 4.21×1011 to 3.41×1015 Nm (1.7?≤?M w ?≤?4.3). The source radii are between 125 and 1,343 m. Stress drop values vary between 0.14 and 32.4 bars with a logarithmic mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear relationship between local and moment magnitudes has been established. The obtained scaling relations show slight evidence of self-similarity violation. However, due to the high scatter of our data, the existence of self-similarity cannot be excluded.  相似文献   

3.
The Hsingtai, China earthquakes of March 1966 were a series of destructive earthquakes associated with the Shu-lu graben. Five strong shocks of Ms ≥ 6 occurred within a period of less than a month, the largest of which was Ms 7.2. Body and surface waves over the period range from several to 100 s have been modeled for the four largest events using synthetic seismograms in the time domain and spectral analysis in the frequency domain. Data from ground deformation, local geology, regional seismic network, and teleseismic joint epicenter determination have also been used to constrain the source model and the rupture process.The fault mechanism of the Hsingtai sequence was mainly strike-slip with a small component of normal dip-slip. The strikes of the four largest shocks range from ~ N26° to 30°E, approximately along strike of the major faults of the Shu-lu graben and the aftershock distribution. The source mechanisms can be explained with a NNW-SSE extensional stress and a NEE-SWW compressional stress acting in the area. The major shocks all had focal depths ~ 10 km.The four largest shocks in the sequence were characterized by a relatively simple and smooth dislocation time history. The durations of the far-field source time functions ranged from 3.5 to 5 s, while the rise times were all ~ 1 s. The seismic moments of the four largest earthquakes ranged from 1.43 × 1025 to 1.51 × 1026 dyne cm?1. The fault sizes of the four events were very close. Assuming circular faults, the diameters of the four events were determined to be between 10 and 14 km. Stress drops varied from ~ 52 to 194 bars. A trend of increasing stress drop with earthquake size was observed.A survey of stress drop determinations for 15 major intraplate earthquakes shows that on the average the magnitude of stress drop of oceanic intraplate earthquakes and passive continental margin events is higher (~ 200 to several hundred bars) than that of continental intraplate earthquakes (~ 100 bars or less).  相似文献   

4.
Scaling relations for seismic events induced by mining   总被引:1,自引:0,他引:1  
The values of seismic moment andS-wave corner frequency from 1575 seismic events induced in South African, Canadian, Polish, and German underground mines were collected to study their scaling relations. The values ofP-wave corner frequency from 649 events were also available. Seismic moments of these events range from 5*103 to 2*1015 N·m (moment magnitude is from –3.6 to 4.1), theS-wave corner frequency ranges from 0.7 to 4438 Hz, and theP-wave corner frequency is between 5 and 4010 Hz. The slope of a regression line between the logarithm ofS- andP-wave corner frequencies is equal to one, and the corner frequencies ofP waves are higher than those ofS waves on the average by about 25 percent. In studies of large and moderate earthquakes it has been found that stress drop is approximately independent of the seismic moment, which means that seismic moment is inversely proportional to the third power of corner frequency. Such a behavior was confirmed for most of the data considered here. A breakdown in the similarity betwen large and small events seems to occur for the events with moment magnitude below –2.5. The average values of seismic moment referred to the same range of corner frequency, however, are vastly different in various mining areas.  相似文献   

5.
—?Thirty-three earthquakes which occurred in the Central Apennines (Italy) with Ml ranging from 2.4 to 3.7 have been spectrally analysed using digital recordings from twelve stations of the Rete Sismometrica Marchigiana (RSM) network. Data corrected for geometrical spreading and quality factor Q have been inverted by means of the Generalised Inversion Technique. Site responses have been compared with those obtained by H/V ratio. Site amplifications have been observed both at stations placed on Pleistocene sediments and at one station located at 1800?m altitude. Source parameters have been calculated by fitting the spectra with an automatic procedure adopting the ω2 source model. The seismic moments range from 9.23?×?1019 to 4.28?×?1021 dyne-cm with an average M 0 (S) to M 0 (P) ratio of 1.13?±?0.38. The stress drops are generally low and they vary between 1.1 and 10.2?bar when estimated by using S source spectra, and between 0.5 and 7.1?bar when the P-source spectra are fitted. For the considered range of seismic moments we observe that the stress drop does not have significant dependence on event size.  相似文献   

6.
Two moderate earthquakes of Mw 5.7 on the first of May and Mw 5.2 on the second of August occurred in the Kishtwar region in the year 2013. Our broadband seismic observatories located in the region recorded these events and the aftershocks. We analyzed these data to understand the seismotectonics of this region. Most of the events were located between 33.03° to 33.29° N latitude and 75.40° to 76.07° E longitude. Focal depths of these shallow earthquakes range from 7 to 12 km and are confined between Panjal Thrust (PT) and Kishtwar Window (KW). Spectral analysis of these events reveals that stress drop, source radius, corner frequency, and moment magnitude varied between 3.3 and 70.1 bars, 0.121 and 3.55 km, 0.397 and 6.06 Hz, and Mw 2.2 and Mw 5.7, respectively. The low stress drop of small-magnitude earthquakes reveals the brittle nature of the upper crust which is coincident with the field observations. The variation of stress drop with magnitude shows positive correlation whereas no such relation was observed between stress drop and depth of focus. The b value calculated (0.83) for the area reveals high stress accumulation within the incompetent rock zones in the area.  相似文献   

7.
The source parameters for 213 Bhuj aftershocks of moment magnitude varying from 2.16 to 5.74 have been estimated using the spectral analysis of the SH- waveform on the transverse component of the three-componnet digital seismograms as well as accelerograms. The estimated stress drop values for Bhuj aftershocks show more scatter (Mo0.5 to 1 ∞ Δσ) toward the larger seismic moment values (log Mo ≥ 1014.5 N-m, larger aftershocks), whereas, they show a more systematic nature (Mo3 ∞ Δσ) for smaller seismic moment (log Mo < 1014.5 N-m, smaller aftershocks) values. This size dependency of stress drop has also been seen from the relation between our estimated seismic moment and source radius, however, this size-dependent stress drop is not observed for the source parameter estimates for the other stable continental region earthquakes in India and around the world. The estimated seismic moment (Mo), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 2.16 to 5.74 range from 1.95 × 1012 to 4.5 × 1017 N-m, 239 to 2835 m and 0.63 to 20.7 MPa, respectively. The near-surface attenuation factor (k) is found to be large of the order of 0.03 for the Kachchh region, suggesting thick low velocity sediments beneath the region. The estimated stress drop values show an increasing trend with the depth indicating the base of seismogenic layer (as characterized by larger stress drop values (>15 MPa)) lying in 22–26km depth range beneath the region. We suggest that the concentration of large stress drop values at 10–36km depth may be related to the large stress/strain associvated with a brittle, competent intrusive body of mafic nature.  相似文献   

8.
Aftershock locations, source parameters and slip distribution in the coupling zone between the overriding North American and subducted Rivera and Cocos plates were calculated for the 22 January 2003 Tecomán earthquake. Aftershock locations lie north of the El Gordo Graben with a northwest-southeast trend along the coast and superimposed on the rupture areas of the 1932 (M w?=?8.2) and 1995 (M w?=?8.0) earthquakes. The Tecomán earthquake ruptured the northwest sector of the Colima gap, however, half of the gap remains unbroken. The aftershock area has a rectangular shape of 42?±?2 by 56?±?2?km with a shallow dip of roughly 12° of the Wadati-Benioff zone. Fault geometry calculated with the Náb??lek (1984) inversion procedure is: (strike, dip, rake)?=?(277°, 27°, 78°). From the teleseimic body wave spectra and assuming a circular fault model, we estimated source duration of 20?±?2?s, a stress drop of 5.4?±?2.5?MPa and a seismic moment of 2.7?±?.7?×?1020?Nm. The spatial slip distribution on the fault plane was estimated using new additional near field strong motion data (54?km from the epicenter). We confirm their main conclusions, however we found four zones of seismic moment release clearly separated. One of them, not well defined before, is located toward the coast down dip. This observation is the result of adding new data in the inversion. We calculated a maximum slip of 3.2?m, a source duration of 30?s and a seismic moment of 1.88?×?1020?Nm.  相似文献   

9.
Site response and source spectra of S waves in the Zagros region, Iran   总被引:1,自引:0,他引:1  
S wave amplitude spectra from shallow earthquakes with magnitudes ranging between 4.2 and 6.2 in the Zagros region of Iran that occurred between 1998 and 2008 are used to examine source parameters and site response of S waves. A generalized inversion scheme has been used to separate the source, propagation path, and local site effects from S wave spectra. For removing the trade-off between source and site terms and propagation effects (including geometric and anelastic attenuation), the spectral amplitudes of the records used were corrected for attenuation and geometrical spreading function using a path model proposed by Zafarani and Soghrat (Bull Seism Soc Am 102:2031–2045, 2012) for the region. We assume a Brune’s point source model to retrieve source parameters like corner frequency, moment magnitude, and high-frequency fall off coefficient, for each event. When the source spectra are interpreted in terms of Brune’s model, the average stress drops obtained are about 7.1 and 5.9 MPa (71 and 59 bars), respectively for the eastern and western Zagros regions. Stress drops range from 1.4 to 35.0 MPa (14 to 350 bars), with no clear dependence on magnitude. The results in terms of stress drop and S wave seismic energy indicate that the Zagros events are more similar to interplate earthquakes of western North America than to intraplate events of eastern North America. The method also provides us with site responses for all 40 stations individually and is an interesting alternative to other methods, such as the H/V method. A new empirical relationship between body-wave magnitudes and moment magnitude has been proposed for the Iranian plateau using derived seismic moment from the inversion.  相似文献   

10.
Source spectra for moderate and small earthquakes are obtained after removing the path effect, site effect, and instrument response, etc. in the observed S-wave spectra. Based on the Brune source model...  相似文献   

11.
In this study, source parameters of the September 18, 2011 M w 6.9, Sikkim earthquake were determined using acceleration records. These parameters were then used to generate strong motion at a number of sites using the stochastic finite fault modeling technique to constrain the causative fault plane for this earthquake. The average values of corner frequency, seismic moment, stress drop and source radius were 0.12 Hz, 3.07 × 1026 dyne-cm, 115 bars and 9.68 km, respectively. The fault plane solution showed strike-slip movement with two nodal planes oriented along two prominent lineaments in the region, the NE-oriented Kanchendzonga and NW-oriented Tista lineaments. The ground motions were estimated considering both the nodal planes as causative faults and the results in terms of the peak ground accelerations (PGA) and Fourier spectra were then compared with the actual recordings. We found that the NW–SE striking nodal plane along the Tista lineament may have been the causative fault for the Sikkim earthquake, as PGA estimates are comparable with the observed recordings. We also observed that the Fourier spectrum is not a good parameter in deciding the causative fault plane.  相似文献   

12.
The source parameters of the major events of a swarm and of two seismic sequences, occurred in the Friuli area (Northeastern Italy) and in Western Slovenia, were estimated. The Claut swarm (C96) occurred since the end of January to June 1996, with a MD 4.3 major shock and it appears composed of three sub-sequences. The two sequences are the Kobarid sequence (K98) started on April 12, 1998 with a MD 5.6 mainshock and the M.te Sernio (S02) sequence caused by the February 14, 2002 earthquake (MD = 4.9). Acceleration and velocity data recorded by the local seismic network of the Istituto Nazionale di Oceanografia e di Geofisica Sperimenale (OGS) and corrected for attenuation, were employed to estimate seismic moments and radiated energies. Source dimensions were inferred from the computed corner frequencies and the stress release was estimated from the Brune stress drop, the apparent stress and the RMS stress drop. On the whole, seismic moments range from 1.7 × 1012 to 1.1 × 1017 N m, and radiated energies are in the range 106–1013 J. Brune stress drops are scattered and do not show any evidence of a self-similarity breakdown for sources down to 130 m radius. The radiated seismic energy scales as a function of seismic moment, with a slope of the scaling relation that decreases for increasing seismic moments.The mechanism of stress release was analyzed by computing the ɛ parameter of Zuniga [Zuniga, R., 1993. Frictional overshoot and partial stress drop. Which one? Bull. Seismol. Soc. Am. 83, 939–944]. The K98 and S02 sequences are characterized by a wide range of the ɛ parameter with stress drop mechanism varying from partial locking to overshoot cases. The ɛ values of the C96 swarm are more homogeneous and close to the Orowan's condition. The radiated seismic energy and the ratio of stress drop between mainshock and aftershocks appear different among the analyzed cases. We therefore investigated the relationship between the stress parameters of the main shock and the energy radiated by the aftershock sequences. For this purpose, we also estimated the source parameters of two other sequences occurred in the area, with mainshocks of MD 4.1 and 5.1, respectively. We found a positive correlation between the Brune stress drop of the mainshock and the ratio between the radiated energy of the mainshock and the summation of the energies radiated by the aftershocks.  相似文献   

13.
The source characteristics of 33 earthquakes with magnitude mb between 4.4 and 6.0, which occurred in the Himalayan and nearby regions, are investigated using the records of the Hyderabad seismograph station. The P- and S-wave spectra of these events are interpreted in terms of Brune's seismic source model for estimating the source parameters, i.e., seismic moment, source dimension, stress drop, average dislocation, apparent stress and the radiated energy. Seismic moments, M0, vary between 0.3 × 1024 and 9.0 × 1026 dyne cm; source dimensions, r, between 4.3 and 18.6 km; stress-drops, Δσ between 0.3 and 151.6 bar; average dislocations, u between 0.6 and 381 cm; apparent stresses, ησ between 0.1 and 73.2 bar. The radiated energy, ER is estimated by the spectrum integration method and is found to vary between 0.2 × 1018 and 9.3 × 1022 erg. In general, the stress drop and apparent stress are found to be high, indicating high stresses in these regions.  相似文献   

14.
利用遗传算法,搜索符合Brune ω^2模型的拐角频率(fc)及零频幅值(Ωc)的最佳值,测定浙江珊溪水库震区88条小震(1.5≤ML≤4.6)的地震矩(M0)、震源尺度(r)及静态应力降(△σ)。地震矩M0在10^10~10^14N·m范围内,与拐角频率fc遵循Mo∝fc^-3的规律;震源尺度和地震矩、应力降之间呈现多重标度特征,地震矩大于临界值2.3×10^12N·m(相应的震源尺度特征值约160m)时,震源尺度与地震矩的关系较强;而应力降(△σ)在震源尺度大于160m后基本趋向恒定,不随震源尺度的增大而增大。浙江珊溪水库震区自2002年7月以来,经历2次大规模的震群活动。震群释放的应力降大小与该震群的规模成正比关系,大的应力降集中在发震断层中段5~6km深度的区域,其发生时间既可以在主震之前,也可以在主震之后。  相似文献   

15.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

16.
A method of body-wave inversion is developed in an attempt to extract the information about asperities or barriers in a fault zone. A sequence of point sources, each being characterized with the seismic moment, the onset time and the location, are iteratively derived from observed records at multi-stations, where the two-dimensional extent of the source location is taken into account. A modification is made of the iterative method of Kikuchi and Kanamori on the formulation of inversion procedure to facilitate the computation.Using this method, we analyse long period P waves of the Tokachi-Oki earthquake of 1968 (Mw = 8.2) and obtain several significant subevents with time durations of ~ 10 s. Their spatio-temporal distribution shows that the rupture process consists of three characteristic stages: (A) a stage of introductory rupture, (B) a stage of main rupture and (C) a stage of aftershocks. The main rupture takes place in the form of clustering around a few sites of the fault plane. The largest subevent occurs in the northwestern corner. The stress drop associated with this event is estimated to be ~ 200 bars, one order of magnitude higher than the stress drop averaged over the entire fault plane. The sum of the seismic moments of the individual subevents amounts to 2.3 × 1028 dyn. cm which approximately coincides with the one estimated from the analysis of long-period surface waves. This implies that the source of the Tokachi-Oki earthquake consists of several major subevents with time durations of ~ 10 s in addition to other minor subevents.  相似文献   

17.
Seismic moment, stress drop, source radius, and fault dislocation have been determined for nineteen significant earthquakes in the Konya area, India using displacement spectra of shear waves computed from strong-motion accelerograph records. Though the stress-drop shows a definite increasing trend with the seismic moment, its correlations with source radius and corner frequency indicate that a constant stress drop of 170 bars represents a good mean value to describe the source mechanism of the Koyna dam earthquakes. An empirical relationship also has been established between magnitude and seismic moment.  相似文献   

18.
—?An intriguing observation in Greenland is a clear spatial correlation between seismicity and deglaciated areas along passive continental margins, a piece of evidence for earthquake triggering due to postglacial rebound. Another piece of evidence for induced seismicity due to deglaciation derives from earthquake source mechanisms. Sparse, low magnitude seismicity has made it difficult to determine focal mechanisms from Greenland earthquakes. On the basis of two normal faulting events along deglaciated margins and from the spatial distribution of epicenters, earlier investigators suggested that the earthquakes of Greenland are due to postglacial rebound. This interpretation is tested here by using more recent data. Broadband waveforms of teleseismic P waves from the August 10, 1993 (m b = 5.4) and October 14, 1998 (m b = 5.1) earthquakes have been inverted for moment tensors and source parameters. Both mechanisms indicate normal faulting with small strike-slip components: the 1993 event, strike = 348.9°, dip = 41.0°, rake =?56.3°, focal depth = 11?km, seismic moment = 1.03?×?1024 dyne-cm, and M w = 5.3; the 1998 event, strike = 61.6°, dip = 58.0°, rake =?95.5°, focal depth = 5?km, seismic moment = 5.72?×?1023 dyne-cm, and M w = 5.1. These and the two prior events support the theory that the shallow part of the lithosphere beneath the deglaciated margins is under horizontal extension. The observed stress field can be explained as flexural stresses due to removal of ice loads and surface loads by glacial erosion. These local extensional stresses are further enhanced by the spreading stress of continental crust and reactivate preexisting faults. Earthquake characteristics observed from Greenland suggest that the dominant seismogenic stresses are from postglacial rebound and spreading of the continental lithosphere.  相似文献   

19.
Seismic strain and b value are used to quantify seismic potential in the Zagros region (Iran). Small b values (0.69 and 0.69) are related to large seismic moment rates (9.96×1017 and 4.12×1017) in southern zones of the Zagros, indicating more frequent large earthquakes. Medium to large b values (0.72 and 0.92) are related to small seismic moment rates (2.94×1016 and 6.80×1016) in middle zones of the Zagros, indicating less frequent large earthquakes. Small b value (0.64) is related to medium seismic moment rate (1.38×1017) in middle to northern zone of the Zagros, indicating frequent large earthquakes. Large b value (0.87) is related to large seismic moment rate (2.29×1017) in northwestern zone, indicating more frequent large earthquakes. Recurrence intervals of large earthquakes (M > 6) are short in southern (10 and 14 years) and northwestern (13 years) zones, while the recurrence intervals are long in the middle (46 and 114 years) and middle to northern (25 years) zones.  相似文献   

20.
The slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes were estimated from tsunami and coastal geodetic data. These two earthquakes generated transoceanic tsunamis, and the waveforms were recorded around the Pacific Ocean. In addition, coseismic coastal uplift and subsidence were measured around the source areas. For the 27 February 2010 Maule earthquake, inversion of the tsunami waveforms recorded at nearby coastal tide gauge and Deep Ocean Assessment and Reporting of Tsunamis (DART) stations combined with coastal geodetic data suggest two asperities: a northern one beneath the coast of Constitucion and a southern one around the Arauco Peninsula. The total fault length is approximately 400 km with seismic moment of 1.7 × 1022 Nm (Mw 8.8). The offshore DART tsunami waveforms require fault slips beneath the coasts, but the exact locations are better estimated by coastal geodetic data. The 22 May 1960 earthquake produced very large, ~30 m, slip off Valdivia. Joint inversion of tsunami waveforms, at tide gauge stations in South America, with coastal geodetic and leveling data shows total fault length of ~800 km and seismic moment of 7.2 × 1022 Nm (Mw 9.2). The seismic moment estimated from tsunami or joint inversion is similar to previous estimates from geodetic data, but much smaller than the results from seismic data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号