首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M w 6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.  相似文献   

2.
采用双差定位方法,利用中国地震台网的数据对2017年8月9日精河6.6级地震的余震序列进行了重新定位。截至2017年8月14日16时,共获得209个余震的重新定位结果。结果显示,余震主要呈近EW向或NWW向分布,余震区长约50km,宽约17km。余震分布在主震的西侧,推断此次地震单侧破裂。余震震源深度为1~25km,其中,震级较大余震深度为8~17km。精河地震序列的余震活动随时间呈起伏状衰减,震后2天内比较活跃,此后出现较快衰减。随时间推移,余震区呈现中西部衰减慢、东部衰减快的特点。此次地震震中距2011年精河5.0级地震震中21km,相比2011年精河地震,其震源更深,震级更大,但震源机制解相近,均为逆冲型。结合区域构造背景分析认为,库松木契克山前断裂为此次地震发震构造的可能性较大。  相似文献   

3.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

4.
The 2014 Kefalonia earthquake sequence started on 26 January with the first main shock (MW6.1) and aftershock activity extending over 35 km, much longer than expected from the causative fault segment. The second main shock (MW6.0) occurred on 3 February on an adjacent fault segment, where the aftershock distribution was remarkably sparse, evidently encouraged by stress transfer of the first main shock. The aftershocks from the regional catalog were relocated using a 7-layer velocity model and station residuals, and their distribution evidenced two adjacent fault segments striking almost N-S and dipping to the east, in full agreement with the centroid moment tensor solutions, constituting segments of the Kefalonia Transform Fault (KTF). The KTF is bounded to the north by oblique parallel smaller fault segments, linking KTF with its northward continuation, the Lefkada Fault.  相似文献   

5.
The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry and ongoing deformation processes using modern seismological methods. A joint inversion for hypocentres and a velocity model plus a surface-wave group dispersion curve analysis were used to obtain an adapted velocity model, customised for mid- and long-period waveform modelling. Based on the new velocity model, regional waveform data of the mainshock and larger aftershocks (M w ?≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking fault planes. The mainshock ruptured a 28° south-dipping area of 24 × 21 km along a north-easterly direction. The rupture plane of the mainshock does not coincide with the aftershock distribution, neither in map view nor with respect to depth. The considered aftershocks form two main clusters. The eastern cluster is associated with the mainshock. The western cluster does not appear to be connected with the rupture plane of the mainshock but, instead, indicates a second activated fault plane dipping at 85° towards the north.  相似文献   

6.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M≥7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

7.
An intraplate earthquake doublet, with 11-min delay between the events, devastated the city of Varzeghan in northwestern Iran on August 11, 2012. The first Mw 6.5 strike-slip earthquake, which occurred after more than 200 years of low seismicity, was followed by an Mw 6.4 oblique thrust event at an epicentral separation of about 6 km. While the first event can be associated with a distinct surface rupture, the absence of a surface fault trace and no clear aftershock signature makes it challenging to identify the fault plane of the second event. We use teleseismic body wave inversion to deduce the slip distribution in the first event. Using both P and SH waves stabilize the inversion and we further constrain the result with the surface rupture extent and the aftershock distribution. The obtained slip pattern shows two distinct slip patches with dissimilar slip directions where aftershocks avoid high-slip areas. Using the estimated slip for the first event, we calculate the induced Coulomb stress change on the nodal planes of the second event and find a preference for higher Coulomb stress on the N-S nodal plane. Assuming a simple slip model for the second event, we estimate the combined Coulomb stress changes from the two events on the focal planes of the largest aftershocks. We find that 90% of the aftershocks show increased Coulomb stress on one of their nodal planes when the N-S plane of the second event is assumed to be the correct fault plane.  相似文献   

8.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

9.
汶川MS8.0地震余震震源机制时空分布特征   总被引:6,自引:0,他引:6       下载免费PDF全文
本文利用CAP波形反演方法,获取了汶川MS8.0地震序列中312个具有较高信噪比波形资料的4级以上余震的震源机制解和震源深度. 基于震源深度空间分布与震源机制时空分布,分析了主震后余震区断层行为特征与应力场时空变化,并对龙门山断裂带中北段的发震断层面几何形态进行了初步探讨. 获得的主要认识如下:(1)余震震源深度分布存在显著的空间分段差异. 绵竹以西的余震区南段与平武以东的北段余震深度范围大于中段(绵竹-平武段),但深度小于5 km的5级以上超浅源地震主要分布在明显偏离龙门山断裂带走向的理县NW向分支与余震区北端NNE向分支,而中段余震主要分布在7~19 km深度. (2)余震机制类型存在明显的时空差异. 余震区中段逆冲型地震占绝对优势,理县NW向分支余震则以走滑型为主,机制类型随时间变化不显著. 沿龙门山断裂带走向的余震区南段,早期(2008年8月底前)逆冲型地震比例高于走滑型、晚期走滑型地震比例显著升高并超过逆冲型;而余震区北段早期走滑型地震占绝对优势、晚期逆冲型地震比例大幅上升且超过走滑型. 南、北两段余震机制类型比例的显著变化,可能是余震区两端断层调整性运动的表现. (3)节面走向及P轴方位优势方向均存在显著的空间差异. 南段NWW向P轴方位与区域应力场一致,中段及理县NW向分支P轴优势方向NEE,而北段具NWW和NEE两个优势方向,这种差异反映了余震活动除了受区域应力场控制外,还受到主震引发的局部应力场的控制. 节面走向的多方位分布则反映不同走向的构造参与了主震后的余震活动. (4)沿龙门山断裂带走向,余震区南段具深部缓倾角、浅部高倾角的铲形断面特征;中段深部倾角均值较稳定、浅部倾角均值随深度减小而增大;北段倾角均值相对稳定,显示其断面几何形态相对简单. 上述不同区段倾角均值随深度的变化揭示龙门山断裂带中北段断层面几何形态复杂.  相似文献   

10.
According to the China Earthquake Networks Center, a strong earthquake of M6.8 occurred in Luding County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China (102.08°E, 29.59°N), on September 5, 2022, with a focal depth of 16 km. Rapid determination of the source parameters of the earthquake sequence is vital for post-earthquake rescue, disaster assessment, and scientific research. Near-field seismic observations play a key role in the fast and reliable determination of earthquake source parameters. The numerous broadband seismic stations and strong-motion stations recently deployed by the National Earthquake Intensity Rapid Report and Early Warning project have provided valuable real-time near-field observation data. Using these near-field observations and conventional mid- and far-field seismic waveform records, we obtained the focal mechanism solutions of the mainshock and M ≥ 3.0 aftershocks through the waveform fitting method. We were further able to rapidly invert the rupture process of the mainshock. Based on the evaluation of the focal mechanism solution of the mainshock and the regional tectonic setting, we speculate that the Xianshuihe fault formed the seismogenic structure of the M6.8 strong earthquake. The aftershocks formed three spatially separated clusters with distinctly different focal mechanisms, reflecting the segmented nature of the Xianshuihe fault. As more high-frequency information has been applied in this study, the absolute location of the fault rupture is better constrained by the near-field strong-motion data. The rupture process of the mainshock correlates well with the spatial distribution of aftershocks, i.e., aftershock activities were relatively weak in the maximum slip area, and strong aftershock activities were distributed in the peripheral regions.  相似文献   

11.
2022年1月8日青海省海北州门源县发生MS6.9地震,震中距离2016年1月21日门源MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源MS6.9地震和2016年门源MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。  相似文献   

12.
Aftershock activity following the April 25, 1989 (M S =6.9) earthquake near San Marcos, Guerrero, Mexico, was monitored by a temporary network installed twelve hours after the mainshock and remaining in operation for one week. Of the 350 events recorded by this temporary array, 103 were selected for further analysis in order to determine spatial characteristics of the aftershock activity. An aftershock area of approximately 780 km2 is delimited by the best quality locations. The area of highest aftershock density lies inside an area delimited by the aftershocks of the latest large event in the region in 1957 (M S =7.5) and it partially overlaps the zone of maximum intensity of the earlier 1907 (M S =7.7) shock. Aftershocks also appear to cluster close to the mainshock hypocenter. This clustering agrees with the zone of maximum slip during the mainshock, as previously determined from strong motion records. A low angle Benioff zone is defined by the aftershock hypocenters with a slight tendency for the slab to follow a subhorizontal trajectory after a 110 km distance from the trench axis, a feature which has been observed in the neighboring Guerrero Gap. A composite focal mechanism for events close to the mainshock which also coincides with the zone of largest aftershock density, indicates a thrust fault similar to the mainshock fault plane solution.The San Marcos event took place in an area which could be considered as a mature seismic gap. Due to the manner in which strain release has been observed to previously occur, the occurrence of a major event, overlapping both the neighboring Guerrero Gap and the San Marcos Gap segments of the Mexican thrust, cannot be overlooked.  相似文献   

13.
Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811–1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.  相似文献   

14.
More than 1000 aftershocks were recorded within a month after the occurrence of the ML 5.5, 5 August 2014 Orkney earthquake. The events were relocated using the double difference method as part of an effort to identify the fault which might be the source of the events. A north–south trend of seismicity was revealed by the relocated events, with a diffuse cluster to the north of the main event. A depth profile shows these two clusters: one at a depth of about 2 km to the north of the main event and the other at depth between 3 and 6 km south of the main event. Focal mechanism solutions of 18 aftershocks were determined using first motion polarities from seismic stations of the Council for Geoscience cluster networks. Stress inversion analysis results from the focal mechanism solutions show a dominant extensional stress field in the region; the main event had a strike-slip fault plane solution. This is consistent with the regional stress field which is predominantly related to the East African rift system. It is possible that the occurrence of the main event triggered seismicity on shallower faults within the mining horizons oriented in a different direction to the fault on which the main event occurred. The area has a complex heterogeneous faulting structure as indicated by the observed low p values and complex focal mechanism solutions.  相似文献   

15.
Investigation of the spatiotemporal properties of the 2003 Lefkada seismic sequence is performed through non-extensive statistical physics. Information on highly accurate aftershock source parameters became feasible from the recordings of a portable digital seismological network that was installed and operated in the study area, during the evolution of the seismic sequence. Thus, the spatiotemporal distribution of aftershocks onto the main and neighboring fault segments was investigated in detail, enabling the recognition of four distinctive seismicity clusters separated by less active patches. The aftershock spatiotemporal properties are studied here, using the ideas of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are presented using the data set in each seismicity cluster, and the analysis results in values for the statistical thermodynamic q T and q D parameters for each cluster, where q T varies from 1.16 to 1.47 and q D from 0.42 to 0.77 for the inter-event times and distances distributions, respectively. These values confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity, and the applicability of the NESP approach in investigating aftershocks sequence. The temporal pattern is discussed using the closely connected to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that the temporal evolution of the Lefkada aftershock sequence in clusters A, B and C is governed by very low number of degrees of freedom, while D is a less organized seismicity structure with a much higher number of degrees of freedom.  相似文献   

16.
We present a fresh look at the source region of the 22 January 2003 M w 7.4 Armería earthquake, which occurred off the Pacific coast of the state of Colima, Mexico, near the town of Armería. The effects of this earthquake in the neighboring states of Colima and Jalisco were different and stronger than those of previous recent major earthquakes in the region. This earthquake and its aftershocks were recorded by two local telemetered seismograph networks (RESCO and RESJAL). From 22 January to 24 January 2003, no important seismicity was located on the plates interface, or within the Rivera Plate, and most epicenters were located west of the Armería River, which is the western border of the Colima Graben, and is located outside of the Colima Gap region. From 24 January to 31 January, the seismicity recorded by both networks showed a migration in depth, with an almost vertical offshore distribution between 4 and 24?km in depth. For this period, a seven-station portable digital seismograph network, equipped with three-component seismometers, was deployed in the epicentral area to study the aftershock sequence in detail. With this denser network more than 200 M L?>?2.0 aftershocks were recorded. The aftershock foci were deeper than those recorded during the early period and most of them locate on a hypothetical 12° dipping interface between the Rivera and North American Plates. Composite focal mechanism solutions for the aftershocks located during both periods indicate a reverse fault character that changes with time. Analysis of the new dataset still indicates that the earthquake was a shallow intraplate event.  相似文献   

17.
Accurate locations of aftershocks of the January 17, 1983 (M s=7.0) main shock in the Ionian islands have been determined, as well as fault plane solutions for this main shock and its largest aftershock, which are interpreted as a right-lateral, strike-slip motion with a thrust component, on a fault striking in about a NE-SW direction.This is considered as a transform fault in the northwesternmost part of the Hellenic arc.  相似文献   

18.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum attershock magnitude of 20 earth-quakes with M≥7.5 in Chinese mainland, and then the variation tendency of attershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum attershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side oftbe cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of attershocks would be high.b) The fault of the M--8. l Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault,and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. Alter a comparison analysis, we suggest that the attershock activity level will not be high in the late period of this earth-quake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

19.
Using the double-difference relocation algorithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake (M S 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-VP, low-VS, and high-Poisson’s ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.  相似文献   

20.
The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M?>?2 (up to M4.4) that occurred during the 24?h preceding the mainshock. The foreshocks occurred along a north?Csouth trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15?s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120?km from the south end of the Elsinore fault zone north of the US?CMexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50?km long, as well as a 10?km north?Csouth aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific?CNorth America plate motion from the Gulf of California in the south into the southernmost San Andreas fault system to the north. We propose that the location of the 2010 El Mayor-Cucapah, as well as the 1992 Landers and 1999 Hector Mine earthquakes, may have been controlled by the bends in the plate boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号