首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
历史上发生过强震地区的余震活动可能持续较长时间,而余震序列在何时可被看作正常的"背景地震活动",即"序列归属"问题在地球动力学和地震物理中有重要意义.时-空"传染型余震序列"(ETAS)模型可分离"背景"地震和"丛集"地震,并用概率形式表示作为相应事件的可能性,为考察此问题提供了可能.本文以1976年唐山MS7.8地震序列为例,对唐山地区1970年以来的ML4.0以上地震进行了时-空ETAS模型拟合,并以2010年以来发生的3次MS4.0以上地震为例讨论了它们的"序列归属"问题.研究结果显示,3次MS4.0以上地震的背景地震概率分别为0.72、0.88和0.76,表明它们作为1976年唐山MS7.8的余震的可能性较低,更可能为背景地震.  相似文献   

2.
We examined the seismic activity which preceded six strong mainshocks that occurred in the Aegean (M?=?6.4–6.9, 33–43° N, 19–28° E) and two strong mainshocks that occurred in California (M?=?6.5–7.1, 32–41° N, 115–125° W) during 1995–2010. We find that each of these eight mainshocks has been preceded by a pronounced decelerating and an equally easily identifiable accelerating seismic sequence with the time to the mainshock. The two preshock sequences of each mainshock occurred in separate space, time, and magnitude windows. In all eight cases, very low decelerating seismicity, as well as very low accelerating seismicity, is observed around the actual epicenter of the ensuing mainshock. Statistical tests on the observed measures of decelerating, q d, and accelerating, q a, seismicity against similar measures calculated using synthetic catalogs with spatiotemporal clustering based on the ETAS model show that there is an almost zero probability for each one of the two preshock sequences which preceded each of the eight mainshocks to be random. These results support the notion that every strong shallow mainshock is preceded by a decelerating and an accelerating seismic sequence with predictive properties for the ensuing mainshock.  相似文献   

3.
The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw?>?4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.  相似文献   

4.
In the paper, we have discovered the abnormal area distribution features of maximum variation values of ground motion parameter uncertainty with different probabilities of exceedance in 50 years within the range of 100°~120°E,29°~42°N for the purpose to solve the problem that abnormal areas of maximum variation values of ground motion parameter uncertainties emerge in a certain cities and towns caused by seismicity parameter uncertainty in a seismic statistical region in an inhomogeneous distribution model that considers tempo-spatial nonuniformity of seismic activity. And we have also approached the interrelation between the risk estimation uncertainty of a site caused by seismicity parameter uncertainty in a seismic statistical region and the delimitation of potential sources, as well as the reasons for forming abnormal areas. The results from the research indicate that the seismicity parameter uncertainty has unequal influence on the uncertainty of risk estimation at each site in a statistical region in the inhomogeneous distribution model, which relates to the scheme for delimiting potential sources. Abnormal areas of maximum variation values of ground motion parameter uncertainty often emerge in the potential sources of Mu≥8 (Mu is upper limit of a potential source) and their vicinity. However, this kind of influence is equal in the homogeneous distribution model. The uncertainty of risk estimation of each site depends on its seat. Generally speaking, the sites located in the middle part of a statistical region are only related to the seismicity parameter uncertainty of the region, while the sites situated in or near the juncture of two or three statistical regions might be subject to the synthetic influences of seismicity parameter uncertainties of several statistical regions.  相似文献   

5.
W. B. Liu  L. Ma 《Pure and Applied Geophysics》2006,163(11-12):2513-2528
In this paper, 28 aftershock sequences are selected, which are distributed in different areas including north China, southwest of China, northwest of China, Taiwan area, Turkey and Greece. In order to investigate the characteristics of these sequences along with different temporal and spatial coordinates, each sequence has been divided into dozens of segments called ``sub-sequences''. The ETAS (Epidemic Type Aftershock Sequences) model is applied to each ``sub-sequence'', and therefore the vectors of parameters of ETAS could be evaluated. Another model named LR (Logistic Regression) model is used to seek the correlate relation between the parameters of ETAS applied to every earthquake ``sub-sequence'' and seismicity. All the analyses and estimations imply that the characteristic of decay of aftershock sequences in different temporal and spatial domains seems to be characterized by the parameters of the ETAS model applied to some aftershock sequences or ``sub-sequences'', and there are some proportional correlate relations between the evaluation of LR model and the occurrence probability of the succeeding strong seismic energy release.  相似文献   

6.
The time and spatial feature of the regional seismicity triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17,1995, was studied. The concerned region is about several hundred kilometers in length and breadth surrounding the epicenter (33°~37°N, 133°~138°E). It is divided into 16 subregions. The seismicity of these subregions from January of 1976 to June of 1996 has been analyzed. It is showed that,① there were significant seismicity changes in 10 subregions triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995. These changes passed a Z statistic test exceeding 0.95 confidence level and the greatest epicenter distance of these subregions was 280 km;②seismicity changes were triggered within 1~5 days in three subregions near the main shock while in other subregions the seismicity changes were triggered within several ten days after the main shock;③ the greatest triggered event is 5.4, which is about the same size as the greatest aftershock;④the regional stress change resulted from the main shock may be the triggered mechanism of the regional seismicity.  相似文献   

7.
There are two fundamentally different approaches to assessing the probabilistic risk of earthquake occurrence. The first is fault based. The statistical occurrence of earthquakes is determined for mapped faults. The applicable models are renewal models in that a tectonic loading of faults is included. The second approach is seismicity based. The risk of future earthquakes is based on the past seismicity in the region. These are also known as cluster models. An example of a cluster model is the epidemic type aftershock sequence (ETAS) model. In this paper we discuss an alternative branching aftershock sequence (BASS) model. In the BASS model an initial, or seed, earthquake is specified. The subsequent earthquakes are obtained from statistical distributions of magnitude, time, and location. The magnitude scaling is based on a combination of the Gutenberg-Richter scaling relation and the modified Båth’s law for the scaling relation of aftershock magnitudes relative to the magnitude of the main earthquake. Omori’s law specifies the distribution of earthquake times, and a modified form of Omori’s law specifies the distribution of earthquake locations. Unlike the ETAS model, the BASS model is fully self-similar, and is not sensitive to the low magnitude cutoff.  相似文献   

8.
针对ETAS模型参数估计方法(MLE)中的初值敏感性问题,提出GA+MLE算法,以GA结果作为MLE算法的初始输入,对结果进行精细计算.通过ETAS模型研究三峡库区微震活动在快速加载及缓慢卸载两种状态下的流体触发、地震自激发及微震活动衰减特征,讨论库水渗透及加卸载过程的可能影响.结果显示:(1)库水快速加载阶段ETAS模型参数μ、α、p及流体触发地震所占比例Rb均显示由小变大、又由大变小的变化过程,但p值的统计差异不显著;在库水缓慢卸载阶段,μ与Rb持续减小;(2)平均来看,库水快速加载阶段流体对微震活动显示较强的外因触发作用,同一条件下序列地震自激发明显增强、衰减相对较慢;水位缓慢卸载阶段,流体对地震活动的触发影响相对较弱,地震自激发不强、衰减相对较快;(3)分阶段来看,蓄水初期库水作用对微震活动的外因触发影响较弱,随库水位的升高及作用时间的增长,流体渗透逐渐发挥作用,孔隙压逐渐增大,流体外因触发作用明显增强,大多数微震活动缘于流体的直接触发(Rb≥95%);足够长的时间之后,由于地下数公里范围在新的载荷及渗透条件下趋于新的平衡,流体渗透影响趋于稳定,孔隙压趋于常数,孔隙压变化趋于0,流体对微震活动的触发作用逐渐减弱.  相似文献   

9.
Introduction In the probability analysis method of seismic risk considering time-space inhomogeneity of seismic activity and adopted commonly in China (State Seismological Bureau, 1996) (called in-homogeneous distribution model for short), the division of seismic statistical regions, delimitation of potential seismic sources and estimation of seismicity parameters are the main links that affect significantly the estimation of ground motion parameters of a site. HUANG and WU (2005) studied …  相似文献   

10.
K-means cluster analysis and seismicity partitioning for Pakistan   总被引:2,自引:2,他引:0  
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and an area from 23.00° to 39.00°N and 59.00° to 80.00°E. A threshold magnitude of 5.2 is considered for K-means cluster analysis. The current study uses the traditional metrics of cluster quality, in addition to a seismic hazard contextual metric to attempt to constrain the preferred number of clusters found in the data. The spatial distribution of earthquakes from the catalogue was used to define the seismic clusters for Pakistan, which can be used further in the process of defining seismogenic sources and corresponding earthquake recurrence models for estimates of seismic hazard and risk in Pakistan. Consideration of the different approaches to cluster validation in a seismic hazard context suggests that Pakistan may be divided into K?=?19 seismic clusters, including some portions of the neighbouring countries of Afghanistan, Tajikistan and India.  相似文献   

11.
Recent developments of the Middle East catalog   总被引:8,自引:2,他引:6  
This article summarizes a recent study in the framework of the Global Earth model (GEM) and the Earthquake Model of the Middle East (EMME) project to establish the new catalog of seismicity for the Middle East, using all historical (pre-1900), early and modern instrumental events up to 2006. According to different seismicity, which depends on geophysical, geological, tectonic, and seismicity data, this region is subdivided to nine subregions, consisting of Alborz–Azerbaijan, Afghanistan–Pakistan, Saudi Arabia, Caucasus, Central Iran, Kopeh–Dagh, Makran, Zagros, and Turkey (Eastern Anatolia; after 30° E). After omitting the duplicate events, aftershocks, and foreshocks by using the Gruenthal method, and uniform all magnitude to Mw scale, 28,244 main events remain for the new catalog of Middle East from 1250 B.C. through 2006. The magnitude of completeness (Mc) was determined as 4.9 for five out of nine subregions, where the least values of Mc were found to be 4.2. The threshold of Mc is around 5.5, 5.0, 4.5, and 4.0, for the time after 1950, 1963, 1975, and 2000, respectively. The average of teleseismic depths in all regions is less than 15 km. Totally, majority of depth for Kopeh–Dagh and Central Iran, Zagros, and Alborz–Azerbaijan, approximately, is 15, 13, and 11 km and for Afghanistan–Pakistan, Caucasus, Makran, Turkey (after 30° E), and Saudi Arabia is about 9 km.  相似文献   

12.
A long-range correlation between earthquakes is indicated by some phenomena precursory to strong earthquakes. Most of the major earthquakes show prior seismic activity that in hindsight seems anomalous. The features include changes in regional activity rate and changes in the pattern of small earthquakes, including alignments on unmapped linear features near the (future) main shock. It has long been suggested that large earthquakes are preceded by observable variations in regional seismicity. Studies on seismic precursors preceding large to great earthquakes with M ≥ 7.5 were carried out in the northeast India region bounded by the area 20°–32°N and 88°–100°E using the earthquake database from 1853 to 1988. It is observed that all earthquakes of M ≥ 7.5, including the two great earthquakes of 1897 and 1950, were preceded by abnormally low anomalous seismicity phases some 11–27 years prior to their occurrence. On the other hand, precursory time periods ranged from 440 to 1,768 days for main shocks with M 5.6–6.5 for the period from 1963 to 1988. Furthermore, the 6 August, 1988 main shock of M 7.5 in the Arakan Yoma fold belt was preceded by well-defined patterns of anomalous seismicity that occurred during 1963–1964, about 25.2 years prior to its occurrence. The pattern of anomalous seismicity in the form of earthquake swarms preceding major earthquakes in the northeast India region can be regarded as one of the potential seismic precursors. Database constraints have been the main barrier to searching for this precursor preceding smaller earthquakes, which otherwise might have provided additional information on its existence. The entire exercise indicates that anomalous seismicity preceding major shocks is a common seismic pattern for the northeast India region, and can be employed for long-range earthquake prediction when better quality seismological data sets covering a wide range of magnitudes are available. Anomalous seismic activity is distinguished by a much higher annual frequency of earthquake occurrence than in the preceding normal and the following gap episodes.  相似文献   

13.
Seismicity parameters for important urban agglomerations in India   总被引:1,自引:0,他引:1  
India’s urban population has increased in the recent times. An earthquake near an urban agglomeration has the potential to cause severe damage. In this article, seismicity parameters for region surrounding important urban agglomerations in India are estimated. A comprehensive earthquake catalogue for the region (6°E–42°E latitude and 60°N–100°N longitude) including historic and pre-historic events has been compiled from various sources. To estimate the parameters, past earthquake data in a control region of radius 300 km has been assembled to quantify the seismicity around each urban agglomeration. The collected earthquake data is first evaluated for its completeness. From combined (historical and instrumental) data, the seismicity parameters b-value, seismic activity rate, λ and maximum expected magnitude (m max ) have been obtained from the methodology proposed by Kijko and Graham (1998). The obtained activity rates indicate that region surrounding Guwahati urban agglomeration is the most seismically active region followed by Srinagar, Patna, Amritsar and Chandigarh.  相似文献   

14.
A study of the spatial distribution of seismicity parameters is undertaken along Turkey and its vicinity, using the Gumbel’s third asymptotic distribution of extreme values (GIII). The data set used spans of 111 years (1900–2010). The seismicity of the whole region is subdivided into equal area mesh of 1° lat. × 1° long. Various seismicity parameters examined, resulted from the application of the GIII method. The results show a quite good correlation between the seismicity parameters and the tectonic regime of the studied area. For instance high values concentrated around North Anatolian Fault. The x 2-test is applied throughout the whole process and in every stage of GIII, in order to check the accuracy of the obtained results. The spatial distribution of upper-bound (ω) formed a W-shape pattern, which shows the difference in the mechanical structure of the materials in the examined area.  相似文献   

15.
利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence, 简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川MS8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川滇地区1970年以来的ML3.0以上的背景地震和丛集地震活动的研究结果表明,该地区地震丛集特征明显、时空分布很不均匀、地震序列常有前震事件.直接将概率值作为地震计数的权重,对地震丛集率空间分布图像分析表明,汶川MS8.0地震前,龙门山断裂带中南段存在着长期、大范围的地震丛集率低值区,震前该段处于应力闭锁状态.对川滇地区地震丛集率低值区内背景地震与全部地震的累积次数、b值和新定义的Δb等统计参量的分析表明,龙日坝与龙门山断裂带具有地震活动的关联性,川滇地区当前的强震潜在危险区可能是巧家地区和汶川MS8.0地震破裂尚未穿越的龙门山断裂带南段.此外,还发现b值倾向于反映局部应力场变化,而Δb能较为敏感地给出更大范围应力场的相对变化.  相似文献   

16.
陶玮  洪汉净  刘培洵  于泳  郑秀珍 《地震》2003,23(2):48-57
根据主要构造分布、震源机制解分布及地震活动状况,将中国大陆及邻区分成20个单元,6个区。利用中国地震局地球物理研究所提供的地震目录,计算近百年来各单元和各区的6级以上强震释放应变能,做出时间滑动后的应变能—时间曲线图,分析认为:(a)中国大陆及邻区百年来的强震活动是一个复杂的时空动态过程,每个区、带有其高、低潮,然而各地区没有统一的地震释放应变能高潮与低潮;(b)强震的活动与平静只是相对而言的,没有绝对的活动或平静;(c)微动态期划分较好的体现了强震活动特征,每个微动态期内至少有一个高潮期,且强震集中在一个主体地区内发生,各搬动态期的能量可以有起伏。通过进一步的讨论和分析,提出中国大陆地壳变形主要受三方面因素的控制:(1)印度板块、太平洋板块和菲律宾板块的活动及其变化控制中国强震活动图像的总体格局;(2)大陆地壳结构的非均匀性及其变化影响了主体地区的形态结构;(3)地壳形变的继承性影响强震活动主体地区形成与变迁的过程。  相似文献   

17.
应用中国地震局地球物理研究所和蒙古科学院天体和地球物理研究中心合作编制的蒙古国及邻区M≥3.5的地震目录,研究了中蒙弧地区的地震活动性特征.结果表明,与中国大陆的“南北地震带”相对应,研究区地震总体分布大致以107°E为界,呈现西强东弱的特点,7级以上的强震集中于贝加尔湖、萨彦、阿尔泰以及天山地区,107°E以东,除纬度40°线附近(燕山地震带)地震较集中且强度大之外,其它地区地震稀少,强度也低.通过断层的野外调查和本地区震源机制解,进一步研究了该地区地震活动性特征的构造应力场及地球动力学成因.研究区大部份地震都是走滑型断层活动的地震.逆断层活动的地震主要分布于中国的天山地区和中蒙边境一带的阿尔泰山地区,正断层活动的地震主要分布于俄罗斯的贝加尔湖裂谷带,走滑兼倾滑断层活动的地震主要分布在研究区域的西部地区.研究区域内的大部份地区主压应力轴(P)的倾角都小于30°,为水平或近水平的构造应力场,自西向东主压应力轴的走向从近南-北方向逐渐转为北东-南西方向.断层的野外调查、震源机制解和区域构造应力场的方向表明,中蒙弧地区主要来自西南面的印度洋板块向北偏东方向的碰撞挤压,通过青藏高原传递到本区,来自东面太平洋板块的影响已较微弱,这是研究区地震活动西强东弱、8级以上强震都发生在西部的主要原因.  相似文献   

18.
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan-Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole-Tuokexun, Ayinke-Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant αin model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present.  相似文献   

19.
空间光滑地震活动性模型中光滑函数的比较研究   总被引:2,自引:1,他引:1       下载免费PDF全文
徐伟进  高孟潭 《地震学报》2012,34(2):244-256
使用Frankel提出的基于空间光滑地震活动性模型的地震危险性分析方法,选择华南、华北、川滇3个地区的地震记录,比较分析了高斯、幂律和地震分形分布光滑函数3种光滑函数在不同地区的适用性.结果表明,使用交叉验证法可以为高斯光滑函数选取合适的相关距离c值,光滑得到的地震活动性模型能够真实反映研究区域的地震活动特征,根据活动性模型计算得出的峰值加速度(PGA)分布也符合人们对研究区域地震危险性的认识.幂律光滑函数适用于地震活动性较强的地区,且具有容易求取光滑参数的优点.光滑程度较低的幂律光滑函数不适用于地震活动性弱的地区,在该类地区应选择光滑程度较高的高斯光滑函数.地震分形分布光滑函数不适用于地震活动较强且地震活动强度差异较大的地区,其容易过分高估高震级地震对地震危险性的影响,而忽略了低震级地震对地震危险性的贡献.但对于地震活动较弱且地震活动强度差异较小的地区,可使用地震分形分布光滑函数,且同样具有容易求取光滑参数的优点.   相似文献   

20.
The seismicity of western Macedonia is examined in the present paper. On the basis of historical information as well as on instrumental data it is found that this area is characterized by low seismicity. The focal region of the Grevena-Kozani 1995 earthquake exhibits the highest seismicity in terms of probabilities for the generation of strong (Ms ≥ 6.0) earthquakes in a period of fifty years. Two other regions with relatively high seismicity were also distinguished (west of Edessa and around Prespes lakes). Accurate determination of focal parameters of all earthquakes occurred in the area during October 1975-April 1995, by the use of a 3-D crustal model shows that the seismic activity is related to the graben structures of the studied area. Finally, evidence is presented that the triggering of the 1995 earthquake may be related to the impoundment of the Polyfytos artificial lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号