首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece (M w  5.3) generated unusually strong long-period waves (periods 4–8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40–250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).  相似文献   

2.
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.  相似文献   

3.
伽师震区位于天山褶皱、帕米尔构造弧与塔里木块体三个构造单元的交接地带,近年来该区发生了一系列的强震活动.为进一步获得该震区详细的地壳速度结构,本文利用人工爆破和天然地震资料联合反演的方法,对1997年新疆伽师震区布设的三维人工地震透射台阵和流动地震台网的资料进行处理,重建了台阵下方上地壳三维速度扰动图像,并结合地震活动分布,对伽师强震群的地震成因作出进一步分析.结果表明研究区上地壳速度结构在纵向和横向上具有明显的非均匀性,随着深度的逐渐加深,震区下方以萨如锡为中心的低速异常体逐步被高速异常体所替代.自12 km深度开始,在与强震群震中相应的位置上,明显出现沿北北西向的高P波速度异常体,在其周围为相对低速分布,呈现出低速条带环绕高速条带的分布格局,VP/VS在相同的位置上也表现为高值分布.这种结构上的差异可能与伽师强震群发生有密切关系.16 km深度的P波速度层析图表明,伽师强震群发生在地壳相对高速扰动区内或是高速扰动向低速扰动过渡的边缘,壳内高速体的存在为强震的孕育和发生提供了重要基础.  相似文献   

4.
The aim of this paper is to show the application of short-period surface waves recorded during deep seismic sounding experiment for constraining shallow velocity structure of the crust. Phase velocity of fundamental mode Rayleigh waves, observed along the CELEBRATION 2000 experiment profile CEL09, were obtained by a p-ω method and has been subsequently inverted for one-dimensional shear velocity models for the top 2 km. Multiple filter technique applied to one shot gather was used to carry out a joint inversion of phase and group velocity data and to provide γR data to be used for Qβ inversion. Validity of obtained VS and Qβ models was confirmed by the reflectivity method. Noticeably, no clear dispersive wawes were observed in the Tepla-Barrandian Unit. Quasi-2D model based on the individual 1D VS models is well correlated with the surface geology. Lower VS are observed in the Saxothuringian Zone in comparison to the Moldanubian Zone. In the vicinity of the Central Bohemian and Moldanubian Plutons, the near-surface VS values are relatively low, but below 1 km depth, they are higher than in surrounding areas. We interpret it as the result of the weathering and cracks within the granitoid rocks.  相似文献   

5.
On 24 May 2014, a Mw 6.9 earthquake occurred in the west of Gokceada Island, northern Aegean Sea. The earthquake was close to Canakkale, Enez, Tekirdag cities, and damaged 300 buildings in the Marmara Region, NW Turkey. We simulated its broadband (0.1–10 Hz) ground motions including 1D deep and shallow structures soil amplification effects at the 12 strong ground motion stations in the western Marmara Region. The 1D deep velocity structures from the focal layer to the engineering bedrock with an S-wave velocity of 0.78 km/s in different azimuthal directions were tuned by comparing the observed group-velocity dispersion curves of Rayleigh and Love waves from the mainshock with theoretical ones. We also added the shallow parts from previous surveys into the 1D models. Synthetic seismograms on the engineering bedrock were generated using the discrete wave number method with a source model and the 1D deep velocity structures. Then the surface motion was generated considering shallow soil amplification. The synthetic seismograms are generally in good agreement with the observed low and high-frequency parts at most of the stations indicating an appropriateness of the source model and the 1D structural model.  相似文献   

6.
We present computations of 3D P-wave velocity field for the segment of the Benioff zone of Kamchatka between 51.5° N to Avacha Bay to Cape Shipunskii to Kronotskii Bay. P-wave travel times for regional earthquakes were used to compute and construct 3D models of the velocity field for this segment of the Benioff zone. We examined the velocity structure to interpret it in conjunction with neotectonic morphostructures. The computations showed a complex structure of the field and the presence of inhomogeneities, both along and across the Benioff zone. Of special interest are the results for the Avacha and Kronotskii basins, where high velocity masses are unusually shallow beneath the low velocity layers in the top of the earth section. This creates high-gradient zones that can possibly generate large earthquakes.  相似文献   

7.
Recent investigations indicate the importance of meteorite impact as a process which has operated throughout geologic time to produce numerous originally circular structures as much as 50 km in diameter. One such structure, at Sudbury, Ontario, is associated with large volumes of internally derived igneous rock. Geological and experimental studies have demonstrated that rocks subjected to intense shock waves produced by hypervelocity meteorite impacts and by nuclear or chemical explosions develop distinctive and uniqueshock-metamorphic features, including: (1) high-pressure minerals such as coesite and stishovite; (2) crystal lattice deformation features such as isotropic feldspar (maskelynite) and « planar features » (shock lamellae) in quartz; (3) ultra-high-temperature reactions not produced by normal geological processes, such as decomposition of zircon to baddeleyite and melting of quartz to lechatelierite. These petrographic features, currently regarded as unequivocal evidence for meteorite impact, can be preserved and recognized even in very old and deeply eroded structures. Such features have now been observed in more than 50 « crypto-explosion » structures ranging in size from 2 km to more than 60 km in diameter. The recent discovery of shock-metamorphic features in rocks of the Sudbury structure, Ontario, indicates that this old and complex structure was also produced by a large meteorite impact. Petrographic shock effects are widespread in inclusions of « basement » rock in the Onaping « tuff », a unit now regarded as afallback breccia deposited in the original crater immediately after impact. Similar shock effects also occur in the footwall rocks around the basin, associated with shatter cones and unusual Sudbury-type breccias. Study of Sudbury specimens has establishedgrades of progressive shock metamorphism comparable to those recognized at younger impact structures (Brent, Ontario; Ries basin, Germany). Igneous activity associated with known meteorite impact structures takes two forms:
  1. direct production of impact melt. At many structures (e.g., Brent, Ontario; Lake Mien, Sweden; Clearwater Lakes and Manicouagan, Quebec), breccias containing shock-metamorphic features occur with «sills» and «dikes» of fine- to medium- grained crystalline igneous rock. Such units, previously regarded as internal volcanic products, now appear to have been formed by complete fusion, injection, and rapid crystallization of large volumes of target rock during the impact event.
  2. emplacement of internally derived magma. The presence of the clearly internally-derived Nickel Irruptive within the Sudbury basin indicates that large meteorite impacts may also control the emplacement of internally-generated magmas through « unroofing » or by the production of deeply-extending zones of weakness below the crater.
The inferred development of the Sudbury structure was a complex process involving: (1) impact of an asteroidal body, forming a large (100-km) diameter crater with a central uplift; (2) subsidence of the central uplift and simultaneous emplacement of the Nickel Irruptive; (3) metamorphism, deformation, and erosion to its present appearance. The post-impact history of the Sudbury structure thus corresponds closely to that established for many ring-dike complexes and caldera subsidences. Similar compound impact-igneous structures, in which internal igneous activity is superimposed on a large impact crater, probably exist on both the earth and the moon. Future examination of « roofed lopoliths » and « ring-dike structures » for shock-metamorphic effects, combined with serious consideration of the geophysical effects produced by large-energy meteorite impacts, will be a productive field for cooperative studies by astrogeologists and igneous petrologists.  相似文献   

8.
近地表沉积层的S速度结构是强地面震动模拟和地震灾害估计的重要参数,尤其是浅部的S波速度结构在工程上具有重要的应用意义.目前大部分资料来源于工程钻孔或工程地震探测,很少有地震波频率范围内的S波速度结构,或者深度达数百米的S波速度结构.通过对天然地震的井下摆波形记录的分析,提供了一种测量地震波频率范围深达数百米的S波速度的有效方法.收集了首都圈地区44个井下摆的近震记录,利用广义射线方法确认了直达S波及其在地表的反射波震相,并通过测量不同台站上两个震相的到时差,获得了首都圈地区浅层100——500m 深度范围的S波速度结构.研究发现,浅部100m 的平均S波速度低于300m/s.当深度增加到500m 时S波速增加到800m/s,平均速度梯度为0.8 (m/s)/m.研究结果表明,井下摆地震记录波形是研究沉积盆地浅层S波结构的重要资料,将为沉积盆地的强地面震动模拟提供重要基础参数.   相似文献   

9.
The object of the present study was to obtain and investigate the 3D velocity structure of the rupture zone of a large earthquake, to be specific, the great ( Mw = 7.8) Kronotskii earthquake that occurred in Kamchatka on December 5, 1997. The event was preceded by a foreshock swarm (December 3–5, 1997) and followed by a long aftershock sequence. We investigated the V P velocity distribution for different time periods: December 3–7, 1997 (when the chief events occurred, viz., the main shock and the larger aftershocks) and for subsequent periods of decaying aftershock activity until December 1998. The velocity distribution in the rupture zone proved to be inhomogeneous. Three regions have been identified: the northeastern (the main shock and foreshocks), the central, and the southwestern, which differ both in the character of seismicity and in velocity. The V P distribution was found to be time-dependent. The velocity was below the standard values in the foreshock-aftershock area in December 1997, subsequently the velocity increased. These results may indicate the absence of a continuous rupture zone, with the main shock and the two largest aftershocks that occurred in the southwest probably being independent events rupturing a transverse fault during the stress rearrangement following the main shock.  相似文献   

10.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

11.
—?Some of the most suspicious seismic disturbances under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are likely to be those associated with mining, as they are shallow, and at least some have an explosion-like m b :M s signature. Previous research highlighted the potential of broadband teleseismic P waves as a way of identifying large mine tremors. Broadband teleseismic P from two suspected large mine collapses, one in Germany (1302 UT, 13 March 1989, 5.4?m b ) and another in Wyoming (1526 UT, 3 February 1995, 5.3?m b ), show differences in character despite the similarity of the reported ground failure and mine types. We apply a full moment-tensor analysis to the teleseismic P waves and show that the data are inconsistent with either a shallow explosion or an earthquake (double-couple) at depth, but this method is unable to distinguish between a shallow dip-slip source and a closing-crack moment tensor. However, three-component surface-wave seismograms recorded at regional distances fit the shallow closing-crack model, but are inconsistent with a shallow earthquake source, because strong Love waves, expected from a double-couple source, are not observed at a number of stations well distributed in azimuth. Here, we restate the equivalence for shallow sources of the closing-crack model and a gravitational collapse model. We use the latter to model the broadband P waves from these mine tremors and show that, while non-unique, the differences in the observed broadband P waves from the two tremors can be attributed to the area, amount of collapse, depth, and rate of collapse. The collapse model predicts negative first-motion for all P waves in contrast to the positive polarity expected from explosions. Thus, the broadband teleseismic P waves have the potential to discriminate between large collapses and explosions.  相似文献   

12.
The source mechanism of a large (Ms ? 7.2) earthquake that occurred in the oceanic plate at the junction of the Tonga—Kermadec trench systems with the aseismic Louisville ridge is found by inverting long-period vertical-component Rayleigh waves recorded by the IDA network. The solution is an almost-pure normal fault, on a plane striking roughly parallel to the trench axis, with seismic moment of 1.7 × 1027 dyn cm, and thus is among the ten largest documented shallow normal-fault earthquakes. A point-source depth of 20 km for the event is resolved by modeling teleseismic body waves; the actual rupture may have extended deeper, to 30 or 40 km. The earthquake was a multiple event, consisting of two sources separated by 16 s. A rupture velocity of 3.5 km s?1 is inferred. The earthquake can be interpreted as tensional failure in the shallow portion of the downgoing plate caused by the gravitational pull of the slab. The Louisville ridge may be creating a local degree of decoupling of the oceanic plate from the overriding plate, and/or a zone of extension within the slab, which could enhance the effect of the gravitational forces in the shallower part of the downgoing plate. In particular, the earthquake could be associated with the break-up of the leading seamount of the ridge, which is currently right at the trench. Alternatively, the earthquake may have been caused by stresses associated with the bending of the plate prior to subduction.  相似文献   

13.
IntroductionBetween January and April of 1997, 7 earthquakes with M(6.0 occurred successively in Jiashi, Xinjiang. The continual occurrence of strong earthquakes within such a small area and in such a short period of time is exceptional for intraplate earthquakes. The Jiashi earthquake swarm took place on the northeast side of the Pamirs, where the Tarim basin, South Tianshan and West Karakoram meet (HU, et al, 1989). This is also a place where a number of active faults develop, so it is…  相似文献   

14.
15.
The paper addresses the construction of one-dimensional (1D) velocity models in the seismogenic regions of Azerbaijan taken individually and the analysis of implications of these models for estimating the key parameters of earthquake sources in Azerbaijan. We considered and analyzed the seismological data from the local earthquakes, the arrival times of the P-, P-g, Pn-, S-, Sg-, and Sn-waves recorded by the network of telemetry stations during the period from 2005 to 2014 with ml ≥ 2.5. For constructing the models, we used the VELEST program which calculates 1D velocity models from travel times of seismic waves. As a result, the 1D models were built for ten regions of Azerbaijan; the key parameters of the hypocenters of the earthquakes were recalculated; and the corrections to the body-wave arrival times at the observation stations were obtained, which increased the accuracy of locating the hypocenter of earthquakes.  相似文献   

16.
Layered Velocity Models of the Western Bohemia Region   总被引:1,自引:0,他引:1  
A new robust and effective optimization algorithm – isometric algorithm – was used for the inversion of layered velocity models, with constant gradient in each layer, to find suitable 1-D models for the location of microearthquakes in the individual four subregions of the West Bohemian earthquake swarm region. Models which are considered as optimal yield the minimum sum of the absolute values of the travel-time residua in locating the whole group of earthquakes in the given subregion. The results obtained from the inversion of P and S waves and from P waves only are shown. For comparison, optimum homogeneous models derived by the grid search method, again using both P and S waves and P waves only, are given. The computations indicate that the models for the individual subregions differ from each other. For layered models the differences are more pronounced, as expected, in the upper parts, down to depths of about 5 km. In comparison with the subregions Nový Kostel and Plesná, the P and S wave velocities for subregion Lazy are relatively higher and the P and S velocities for subregion Klingenthal relatively lower. In the lower parts the differences are smaller and the velocities have practically identical gradients. The highest velocities were obtained for subregion Lazy and the lowest velocities for subregion Klingenthal, as well for the homogeneous models. The model that represents the whole swarm region was determined in a similar way. This model is compared with the previously published velocity-depth distribution, obtained from DSS profile VI/70 in the vicinity of the area under study.  相似文献   

17.
基于一维单侧有限移动震源模式,根据地震波传播过程中的多普勒效应,分别利用P波和S波拐角频率的方位变化,反演2012年7月20日江苏高邮、宝应交界MS4.9地震的发震断层面参数。P波和S波拐角频率的反演结果一致显示:本次地震的断层面破裂方向为232°左右,破裂面呈NE-SW向;地震马赫数v/c为0.2左右,平均破裂速度小于S波速度,破裂长度较短,为0.2~0.3km左右。破裂面方位与震源机制解、宏观烈度调查和余震精定位的研究结果具有一致性,结合震区周边的地质构造背景,分析认为滁河断裂很可能是高邮、宝应交界MS4.9地震的发震构造。  相似文献   

18.
We analyze temporal variations of seismic velocity along the Karadere-Düzce branch of the north Anatolian fault using seismograms generated by repeating earthquake clusters in the aftershock zones of the 1999 Mw7.4 İzmit and Mw7.1 Düzce earthquakes. The analysis employs 36 sets of highly repeating earthquakes, each containing 4–18 events. The events in each cluster are relocated by detailed multi-step analysis and are likely to rupture approximately the same fault patch at different times. The decay rates of the repeating events in individual clusters are compatible with the Omori's law for the decay rate of regional aftershocks. A sliding window waveform cross-correlation technique is used to measure travel time differences and evolving decorrelation in waveforms generated by each set of the repeating events. We find clear step-like delays in the direct S and early S-coda waves (sharp seismic velocity reduction) immediately after the Düzce main shock, followed by gradual logarithmic-type recoveries. A gradual increase of seismic velocities is also observed before the Düzce main shock, probably reflecting post-seismic recovery from the earlier İzmit main shock. The temporal behavior is similar at each station for clusters at various source locations, indicating that the temporal changes of material properties occur in the top most portion of the crust. The effects are most prominent at stations situated in the immediate vicinity of the recently ruptured fault zones, and generally decrease with normal distance from the fault. A strong correlation between the co-seismic delays and intensities of the strong ground motion generated by the Düzce main shock implies that the radiated seismic waves produced the velocity reductions in the shallow material.  相似文献   

19.
Tsunami generated by submarine slumps and slides are investigated in the near-field, using simple source models, which consider the effects of source finiteness and directivity. Five simple two-dimensional kinematic models of submarine slumps and slides are described mathematically as combinations of spreading constant or slopping uplift functions. Tsunami waveforms for these models are computed using linearized shallow water theory for constant water depth and transform method of solution (Laplace in time and Fourier in space). Results for tsunami waveforms and tsunami peak amplitudes are presented for selected model parameters, for a time window of the order of the source duration.The results show that, at the time when the source process is completed, for slides that spread rapidly (cR/cT≥20, where cR is the velocity of predominant spreading), the displacement of the free water surface above the source resembles the displacement of the ocean floor. As the velocity of spreading approaches the long wavelength tsunami velocity the tsunami waveform has progressively larger amplitude, and higher frequency content, in the direction of slide spreading. These large amplitudes are caused by wave focusing. For velocities of spreading smaller than the tsunami long wavelength velocity, the tsunami amplitudes in the direction of source propagation become small, but the high frequency (short) waves continue to be present. The large amplification for cR/cT1 is a near-field phenomenon, and at distances greater than several times the source dimension, the large amplitude and short wavelength pulse becomes dispersed.A comparison of peak tsunami amplitudes for five models plotted versus L/h (where L is characteristic length of the slide and h is the water depth) shows that for similar slide dimensions the peak tsunami amplitude is essentially model independent.  相似文献   

20.
A sequence of 98 teleseismically recorded earthquakes occurred off the east coast of Kamchatka at depths between 10-90 km around latitude 52.5°N and longitude 160°E on May 16–23, 2013. The swarm occurred along the northern limit of the rupture area of the 1952 Mw 9.0 great Kamchatka earthquake, the fifth largest earthquake in the history of seismic observations. On May 24, 2013 the strongest deep earthquake ever recorded of Mw 8.3 occurred beneath the Sea of Okhotsk at a depth of 610 km in the Pacific slab of the Kamchatka subduction zone, becoming the northernmost deep earthquake in the region. The deep Mw 8.3 earthquake occurred down-dip of the shallow swarm in a transition zone between the southern deep and northern shallow segments of the Pacific slab. Several deep aftershocks followed, covering a large, laterally elongated part of the slab. We suppose that the two described earthquake sequences, the May 16–23 shallow earthquake swarm and the May 24–28 deep mainshock-aftershock series, represent a single tectonic event in the Pacific slab having distinct properties at different depth levels. A low-angle underthrusting of the shallow part of the slab recorded by the shallow earthquake swarm activated the deep part; this process induced the deep mainshock-aftershock series only three days after the swarm. The domain of the subducting slab activated by the May 2013 earthquake occurrence was extraordinarily large both down-dip and along-strike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号