首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the Hanford Reach of the Columbia River, a thin layer of recent alluvium overlies the sedimentary formations that comprise the unconfined groundwater aquifer. Experimental and modelling studies have demonstrated that this alluvial layer exerts significant control on the exchange of groundwater and surface water (hydrologic exchange flux), and is associated with elevated levels of biogeochemical activity. This layer is also observed to be strongly heterogeneous, and quantifying the spatial distribution of properties over the range of scales of interest is challenging. Facies are elements of a sediment classification scheme that groups complex geologic materials into a set of discrete classes according to distinguishing features. Facies classifications have been used as a framework for assigning heterogeneous material properties to grid cells of numerical models of flow and reactive transport in subsurface media. The usefulness of such an approach hinges on being able to relate facies to quantitative properties needed for flow and reactive transport modelling, and on being able to map facies over the domain of interest using readily available information. Although aquifer facies have been used in various modelling contexts, application of this concept to riverbed sediments is relatively new. Here, we describe an approach for categorizing and mapping recent alluvial (riverbed) sediments based on the integration of diverse observations with numerical simulations of river hydrodynamics. The facies have distinct distributions of sediment texture that correspond to variations in hydraulic properties, and therefore provide a useful framework for assigning heterogeneous properties in numerical simulations of hydrologic exchange flows and biogeochemical processes.  相似文献   

2.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

3.
A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three para-meters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that all the examined models perform adequately for the fine sediment data, where the sediment particles have more uniform gra-dation and relative roughness is not a factor. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulation. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.  相似文献   

4.
Fine sediment deposition in streambeds can reduce pore water fluxes and the overall rate of hyporheic exchange, producing deleterious effects on benthic and hyporheic ecological communities. To increase understanding of the factors that control the reduction of hyporheic exchange by fine sediment deposition, we conducted experiments in a laboratory flume to observe changes in the rates of solute exchange and kaolinite clay deposition as substantial amounts of kaolinite accumulated in the streambed. Two long‐term experiments were conducted, with durations of 14 days and 29 days. Use of a laboratory flume system allowed steady stream flow conditions to be maintained throughout both experiments, and alternating injections of known quantities of kaolinite and a sodium chloride tracer were used to assess the effect of clay accumulation on hyporheic exchange directly. In the first experiment, there was no bed sediment transport and kaolinite deposition formed a highly clogged near‐surface layer that greatly reduced hyporheic exchange. Application of a fundamental model for advective hyporheic exchange indicated that the effective permeability and porosity of the streambed decreased substantially during the course of the experiment. In the second experiment, the kaolinite was prepared with different surface properties to be more mobile, and the experiment was conducted with a small degree of bed sediment transport. As a result, no distinct clogged layer developed, and the rate of hyporheic exchange was found to remain approximately constant throughout the experiment (29 days). These results indicate that increasing fine sediment loads, e.g. those that occur from changes in land use, can have substantially different impacts on hyporheic exchange and associated ecological processes depending on the stream flow conditions, the rate and frequency of bed sediment transport, and the extent of interaction of the introduced fines with bed sediments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

6.
Sediment transport in ice-covered channels   总被引:1,自引:0,他引:1  
The existence of ice cover has important effects on sediment transport and channel morphology for rivers in areas with an annual occurrence of an ice season. The interaction of sediment transport and s...  相似文献   

7.
A semi-implicit 3-D numerical formulation for solving non-hydrostatic pressure free-surface flows on an unstructured,sigma grid is proposed.Pressure-splitting and 9 semi-implicit methods are inherited and reformed from Casulli’s z-coordinate formulation.The non-orthogonal sigma-coordinate transformation leads to additional terms. The resulting linear system for the non-hydrostatic correction is diagonally dominant but unsymmetric,and it is solved by the BiCGstab method.In contrast with z-coordinate non-hydrostatic models,the new model fits vertical boundaries much better,which is important for the long-time simulation of sediment transport and riverbed deformation.A lock-exchange density flow is computed to determine whether the new scheme is able to simulate non-hydrostatic free-surface flows.The new model is further verified using the field data of a natural river bend of the lower Yangtze River.Good agreement between simulations and earlier research results,field data is obtained, indicating that the new model is applicable to hydraulic projects in real rivers.  相似文献   

8.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

9.
Instead of the standard leapfrog (SLF) scheme, an alternative leapfrog (ALF) scheme is used to solve the barotropic equations of the external mode in the Princeton Ocean Model (POM). The ALF scheme is modified in this study to deal with the nonlinear finite amplitude surface displacement. ALF has the advantage of improved numerical properties, longer time step relative to SLF, conservation of energy, and elimination of the Asselin filter. The numerical experiments of POM are implemented to show the above advantages. The split time stepping in 3D POM is found in this study to have numerical discrepancy due to the mismatched stepping between external and internal modes, and it results in a splitting error between the external and internal modes. A new split time stepping is therefore proposed. Numerical analysis indicates that there is no discrepancy with this split time stepping. The new split time stepping is implemented in the 3D POM. The numerical experiments demonstrate that the splitting error in POM can be reduced by three orders of magnitude relative to the original formulation, though the numerical error of the original formulation is already quite small.  相似文献   

10.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

11.
This paper presents a computational fluid dynamics model for simulation of twodimensional (2-D) water flow, sediment transport, bank failure processes, and the subsequent channel pattern changes. Effects of secondary currents at channel bends are included in the modified momentum conservation equation of water flow. An improved bank failure model is applied to calculate bank failure due to riverbed erosion, and to simulate lateral migration and planform changes of alluvial channels. The water flow model has been validated using laboratory measurements of flow in consecutive bends designed by the authors, in addition to flume test data from the literature.  相似文献   

12.
三峡工程运用后,长江中游荆江河段持续冲刷,床沙与推移质、悬移质泥沙不断交换,从而造成该河段床沙发生不同程度的调整,对长江中下游河床演变及非平衡输沙机理的研究具有重要影响.在新水沙条件下,总结分析了沙波运动特性及床沙交换方式,引入Markov三态转移概率及非均匀沙隐暴系数,得到基于状态转移概率的沙质河段床沙级配调整的计算模型.研究结果表明:(1)20092014年,沙市站年内床沙中值粒径有先增大后减小的趋势,而监利站年内床沙中值粒径则先减小后增大,且荆江河段年际床沙中值粒径总体呈上升趋势,粗化程度约为6.9%~9.3%;(2)20092014年,沙市站床沙组成中粒径d<0.062 mm的泥沙所占比重不变,0.062 mm≤d<0.25 mm的泥沙所占比重逐年减少(累计减少11.4%),d≥0.25 mm的泥沙所占比重逐年增加(累计增加11.4%),而监利站床沙组成均存在波动性变化;(3)荆江河段床沙转换为推移质的概率随着泥沙粒径的增大而增大,床沙转换为悬移质的概率随着泥沙粒径的增大而减小,而推移质和悬移质转换为床沙的概率均随着泥沙粒径的增大而增大,河床发生冲刷粗化时泥沙输移的主要形式为悬移质(概率为81%~87%),而淤积细化时床沙补给主要来源于推移质(概率为8%~12%).通过验证,本文概率模型的计算结果与实测资料符合较好,能够应用于长江中游沙质河段年际床沙粗化及年内床沙级配调整过程预报,为进一步开展三峡工程下游非均匀悬移质泥沙沿程恢复机理的研究提供理论基础.  相似文献   

13.
采用天然河道实测资料分析和实验室试验分析方法对伊拉克底格里斯河摩苏尔55km河段的河道床沙组成进行研究,目的是分析河床表层及底层泥沙组成,以及该河段的床沙粗化条件.通过收集天然河道的床沙资料,对沙样进行实验室分析,结果表明:底格里斯河摩苏尔河段床沙已形成粗化:一般河床表层泥沙颗粒大小分布随着河段距离的增加而减小,床沙接近于均勻分布,表层床沙沙样颗粒中圆盘形、 球形、柱形和片状分别为48.34%、25.2%、15.34%和11.08%.在床沙的表层和底层泥沙以粗沙砾石为主,分别为74%和36%.  相似文献   

14.
A shock absorbing cushion has never been introduced into any traditional weir surface repair layer design.However,shocks induced by high discharge with heavy sediment can easily produce brittle fracture and peeling over a weir surface repair layer as it is impacted by floods accompanied by particles of different sizes.In this study,transcending traditional designs,the authors developed a composite unit designed with a shock absorbing cushion that has performed well during field tests,proving that the weir body can be effectively protected even if the composite units are directly laid on a severely uneven weir surface repair layer.  相似文献   

15.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

16.
This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed.The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.  相似文献   

17.
Field data from the Lower Yellow River (LYR) covering a period often consecutive years are used to test a mathematical model for one dimensional sediment transport by unsteady flow developed previously by the writers. Data of the first year of the said period, i.e., 1976, are used to calibrate the model and those of the remaining years to verify it. Items investigated include discharge, water stage, rate of transport of suspended sediment and riverbed erosion/deposition. Comparisons between computed and observed data indicate that the proposed model may well simulate sediment transport in the LYR under conditions of unsteady flow with sufficient accuracy.  相似文献   

18.
《Continental Shelf Research》2006,26(17-18):2319-2334
Instrumented bottom tripods have provided important data on sediment transport processes on continental shelves and in estuaries for four decades. Since the initial deployment in a tidal channel in Puget Sound, WA, in 1965 numerous tripods have been constructed to investigate bottom boundary layer and sediment dynamics worldwide. Tripod data have led to new understanding of near-bottom wave and current flows in the coastal ocean, and have been crucial to the development of shelf circulation and sediment transport models. Calculations of bottom stress, bottom roughness, and sediment flux that resulted directly from tripod data have been compared to bottom boundary layer model results. Where these have differed, new or revised model components have been developed to improve the skill of the models. The many discoveries that have been made from tripod experiments include dense, near-bottom fluid mud layers that transport large quantities of suspended sediment offshore into deeper regions of the continental shelf. This process has been linked to the seaward progradation of subaqueous deltas and to the boundaries of mid-shelf mud deposits off rivers with high fine-sediment discharge.  相似文献   

19.
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process‐based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses. Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface–subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
J.W.N. Smith  D.N. Lerner 《水文研究》2008,22(24):4679-4694
The results of research on the pollutant retardation potential of permeable riverbed sediments in catchments with significant groundwater–surface water (GW-SW) interaction are presented. The fraction of organic carbon and cation exchange capacity of fluvial sediments in various geomorphologic environments have been quantified. Sediments in selected reaches of the rivers Tern and Leith (UK), from the underlying Permian sandstone aquifers, and from along the length of the rivers Severn and Eden into which the Tern and Leith discharge have been investigated. Statistical analyses show significant variation in the geochemistry and pollutant retardation potential of sediments from different geomorphologic features, and between upland and lowland rivers. The sorption potential of fine-grained sediments deposited in pools was greater than sand in runs and coarser deposits in riffles. Similarly, sediments in lowland rivers were found to have a greater retardation potential than those in upland rivers. There was generally greater retardation potential in fluvial sediments of all types than in the underlying aquifers, and in lowland rivers the fluvial sediment retardation potential greatly dominated that of the aquifer. The findings demonstrate the potential for pollutant retardation processes in riverbed sediments of sandstone catchments, and suggest that consideration of retardation processes at the groundwater–surface water interface should be included into environmental risk-assessment studies, in order to better assess and manage the effects of contaminated groundwater discharges to rivers, particularly in lowland catchments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号