首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary. The 300 km ECORS - Bay of Biscay profile was carried out along the Aquitaine shelf and comprised a complete set of experiments including zero-offset and 7.5 km constant offset vertical seismic reflection and six expanding spread profiles. Large offset recordings were fundamental for the definition of the layered lower crust and the Moho, while ESPs provided decisive complementary information for the geological interpretation. These data show a strong variation in crustal thickness from about 20 km beneath the rifted Parentis basin, a failed arm of the oceanic Bay of Biscay, up to 35 km to the north below the Armorican shelf, in the Hercynian domain, and to the south below the Cantabria shelf, in the vicinity of the Pyrenean deformation front. The results have important implications for the behaviour of the crust during the formation of rifted sedimentary basins and during continental collision.  相似文献   

5.
6.
7.
In order to investigate the velocity structure, and hence shed light on the related tectonics, across the Narmada–Son lineament, traveltimes of wide-angle seismic data along the 240 km long Hirapur–Mandla profile in central India have been inverted. A blocky, laterally heterogeneous, three-layer velocity model down to a depth of 10 km has been derived. The first layer shows a maximum thickness of the upper Vindhyans (4.5 km s−1 ) of about 1.35 km and rests on top of normal crystalline basement, represented by the 5.9 km s−1 velocity layer. The anomalous feature of the study is the absence of normal granitic basement in the great Vindhyan Graben, where lower Vindhyan sediments (5.3 km s−1 ) were deposited during the Precambrian on high-velocity (6.3 km s−1 ) metamorphic rock. The block beneath the Narmada–Son lineament represents a horst feature in which high-velocity (6.5 km s−1 ) lower crustal material has risen to a depth of less than 2 km. South of the lineament, the Deccan Traps were deposited on normal basement during the upper Cretaceous period and attained a maximum thickness of about 800 m.  相似文献   

8.
9.
Summary. A two-ship refraction profile was fired on the Australian continental shelf during the Banda Sea geophysical programme carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. Some of the 55-kg shots fired during this profile were observed at an array of stations in northern Australia to a distance of 1150 km.
The first arrival P travel times at the land stations had apparent velocities of 6.52, 8.24 and 8.48 km/s. The observed travel times correspond closely with those for other stable continental platform or shield regions. The travel times in these regions are of the order of 6 s less than those given in the Jeffreys—Bullen tables at distances of 700 to 1150 km.
The observations are interpreted as implying an upper-mantle velocity of 8.4 km/s at a depth of about 75 km.  相似文献   

10.
Summary. Some deep crustal features underlying the Campos basin are best recognized in a few reflection seismic sections that have been reprocessed recently to 10 s two-way traveltime. A prominent climbing-to-the-basin reflector is interpreted as the Moho, and a relatively steep fracture zone is, probably, the first example so far of an extensional fault crossing the whole crust and offsetting the Moho. Further constraints on the deep structure of the basin are provided by estimating the thinning of the crust from shallow seismic data and gravity modelling, and by cross-plotting backstripped subsidence curves against curves predicted by the lithospheric stretching model.  相似文献   

11.
We report results from the Seismic Wide-Angle and Broadband Survey carried out over the Mid North Sea High. This paper focuses on integrating the information from a conventional deep multichannel reflection profile and a coincident wide-angle profile obtained by recording the same shots on a set of ocean bottom hydrophones (OBH). To achieve this integration, a new traveltime inversion scheme was developed (reported elsewhere) that was used to invert traveltime information from both the wide-angle OBH records and the reflection profile simultaneously. Results from the inversion were evaluated by producing synthetic seismograms from the final inversion model and comparing them with the observed wide-angle data, and an excellent match was obtained. It was possible to fine-tune velocities in less well-resolved parts of the model by considering the critical distance for the Moho reflection. The seismic velocity model was checked for compatibility with the gravity field, and used to migrate and depth-convert the reflection profile. The unreflective upper crust is characterized by a high velocity gradient, whilst the highly reflective lower crust is associated with a low velocity gradient. At the base of the crust there are several subhorizontal reflectors, a few kilometres apart in depth, and correlatable laterally for several tens of kilometres. These reflectors are interpreted as representing a strike section through northward-dipping reflectors at the base of the crust, identified on orthogonal profiles by Freeman et al. (1988) as being slivers of subducted and imbricated oceanic crust, relics of the mid-Palaeozoic Iapetus Ocean.  相似文献   

12.
13.
Summary. Nine portable seismic stations deployed across the Western Plains of New South Wales recorded signals in the distance range 250–1000 km from large timed explosions at both ends of the line. A velocity—depth model derived from the travel-time data has the following features: a two-layer crust with a thickness of 35 km; a sub-Moho velocity of 7.98 km/s; an abrupt increase to 8.36 km/s at 100 km depth; a further step to 8.72 km/s at 190 km depth, with a low-velocity channel immediately above the discontinuity. The model has several features in common with others derived from long-range profiles in Australia and elsewhere. The data, however, provide the first suggestion of a low P -velocity channel in Eastern Australia.  相似文献   

14.
15.
Magnetotellurics along the Fennoscandian Long Range profile   总被引:2,自引:0,他引:2  
Summary. Estimates of magnetotelluric transfer functions along the Fennoscandian Long Range (FENNOLORA) profile are presented and discussed in relation to the major lithotectonic subdivisions of the Swedish part of the Baltic shield. None of the transfer functions are found to be consistent with a one-dimensional earth structure, thereby making a quantitative interpretation difficult. However, the geological units are found to display characteristic differences in the obtained transfer functions, and in some areas a quantitative interpretation can be justified. The most interesting structure indicated is a low resistive (4 μm) crustal structure of lateral extension more than 150 km centred around the Skellefte ore district. A minimum thickness for this structure of 15 km is inferred.  相似文献   

16.
17.
18.
19.
20.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号