首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Carolina de Michilla district, northern Chile, stratabound copper mineralization is hosted by Jurassic volcanic rocks along the trace of the Atacama fault system. In this study, we present the overall effects of hydrothermal alteration on the magnetic properties of rocks in this district. Two types of metasomatic alteration associations occur, one of regional extent and the other of local hydrothermal alteration associated with copper mineralization (e.g., Lince–Estefanía–Susana). Regional alteration is interpreted as a low-grade “propylitic association” characterized by an epidote–chlorite–smectite–titanite–albite–quartz–calcite association. The local hydrothermal alteration is characterized broadly by a quartz–albite–epidote–chlorite–calcite mineral assemblage. The most pervasive alteration mineral is albite, followed by epidote and, locally, actinolite. These minerals contrast sharply against host rock minerals such as chlorite, calcite, zeolite, prehnite, and pumpellyite, but alteration is constrained to mineralized bodies as narrow and low contrast alteration halos that go outwards from actinolite–albite to epidote–albite, to epidote–chlorite, and finally to chlorite. Hydrothermal alteration minerals, compared to regional alteration minerals, show iron-rich epidotes, a lower chlorite content of the chlorite–smectite series, and a nearly total albite replacement of plagioclase in the mineralized zones. Opaque minerals associated with regional alteration are magnetite and maghemite, and those associated to hydrothermal alteration are magnetite, hematite, and copper sulphides. We present paleomagnetic results from nine sites in the Michilla district and from drill cores from two mines. Local effects of hydrothermal alteration on the original magnetic mineralogy indicate similar characteristics and mineralogy, except for an increase of hematite that is spatially associated with the Cu–sulphide breccias with low magnetic susceptibilities. Results indicate that it is impossible to magnetically differentiate mineralized bodies from unmineralized lavas, except for pyrite-rich hydrothermal breccias. In conclusion, for stratabound copper deposits of the Michilla type, the overall effect of hydrothermal alteration on the paleomagnetic properties of rocks is of low contrast, not clearly discernable even at a small scale. From an exploration point of view, magnetic exploration surveys should not discern mineralized bodies of Cu–sulphide breccias except in detailed ground surveys due to the small size of contrasting bodies. Unoriented drill cores with primary ore mineralization record a characteristic remanent magnetization of reverse polarity. Taking into account the azimuth and dip of the drill cores, we were able to compare the magnetization of the mineralized bodies with the characteristic directions from sites drilled in situ from Late Jurassic–Early Cretaceous intrusives mostly. The characteristic direction recorded by the Pluton Viera is similar to the magnetization of the ore bodies of the Estefania mine. If copper mineralization mostly postdates the tilt of the volcanic flows, the low paleomagnetic inclinations suggest an age for the mineralization near 145 Ma, the time of the lowest paleolatitude for the South American plate during the Mesozoic.  相似文献   

2.
Magmatic sulfide deposits consist of pyrrhotite, pentlandite, chalcopyrite (± pyrite), and platinum-group minerals (PGM). Understanding the distribution of the chalcophile and platinum-group element (PGE) concentrations among the base metal sulfide phases and PGM is important both for the petrogenetic models of the ores and for the efficient extraction of the PGE. Typically, pyrrhotite and pentlandite host much of the PGE, except Pt which forms Pt minerals. Chalcopyrite does not host PGE and the role of pyrite has not been closely investigated. The Ni–Cu–PGE ores from the South Range of Sudbury are unusual in that sulfarsenide PGM, rather than pyrrhotite and pentlandite, are the main carrier of PGE, probably as the result of arsenic contribution to the sulfide liquid by the As-bearing metasedimentary footwall rocks. In comparison, the North Range deposits of Sudbury, such as the McCreedy East deposit, have As-poor granites in the footwall, and the ores commonly contain pyrite. Our results show that in the pyrrhotite-rich ores of the McCreedy East deposit Os, Ir, Ru, Rh (IPGE), and Re are concentrated in pyrrhotite, pentlandite, and surprisingly in pyrite. This indicates that sulfarsenides, which are not present in the ores, were not important in concentrating PGE in the North Range of Sudbury. Palladium is present in pentlandite and, together with Pt, form PGM such as (PtPd)(TeBi)2. Platinum is also found in pyrite. Two generations of pyrite are present. One pyrite is primary and locally exsolved from monosulfide solid solution (MSS) in small amounts (<2 wt.%) together with pyrrhotite and pentlandite. This pyrite is unexpectedly enriched in IPGE, As (± Pt) and the concentrations of these elements are oscillatory zoned. The other pyrite is secondary and formed by alteration of the MSS cumulates by late magmatic/hydrothermal fluids. This pyrite is unzoned and has inherited the low concentrations of IPGE and Re from the pyrrhotite and pentlandite that it has replaced.  相似文献   

3.
The Jinbaoshan Pt–Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP). The deposit is reported to contain one million tonnes of Pt–Pd ore grading 0.21% Ni and 0.16% Cu with 3.0 g/t (Pd + Pt). Platinum-group minerals (PGM) mostly are ∼10 μm in diameter, and are commonly Te-, Sn- and As-bearing, including moncheite (PtTe2), atokite (Pd3Sn), kotulskite (PdTe), sperrylite (PtAs2), irarsite (IrAsS), cooperite (PtS), sudburyite (PdSb), and Pt–Fe alloy. Primary rock-forming minerals are olivine and clinopyroxene, with clinopyroxene forming anhedral poikilitic crystals surrounding olivine. Primary chromite occurs either as euhedral grains enclosed within olivine or as an interstitial phase to the olivine. However, the intrusion has undergone extensive hydrothermal alteration. Most olivine grains have been altered to serpentine, and interstitial clinopyroxene is often altered to actinolite/tremolite and locally biotite. Interstitial chromite grains are either partially or totally replaced by secondary magnetite. Base-metal sulfides (BMS), such as pentlandite and chalcopyrite, are usually interstitial to the altered olivine. PGM are located with the BMS and are therefore also interstitial to the serpentinized olivine grains, occurring within altered interstitial clinopyroxene and chromite, or along the edges of these minerals, which predominantly altered to actinolite/tremolite, serpentine and magnetite. Hydrothermal fluids were responsible for the release of the platinum-group elements (PGE) from the BMS to precipitate the PGM at low temperature during pervasive alteration. A sequence of alteration of the PGM has been recognized. Initially moncheite and atokite have been corroded and recrystallized during the formation of actinolite/tremolite, and then, cooperite and moncheite were altered to Pt–Fe alloy where they are in contact with serpentine. Sudburyite occurs in veins indicating late Pd mobility. However, textural evidence shows that the PGM are still in close proximity to the BMS. They occur in PGE-rich layers located at specific igneous horizons in the intrusion, suggesting that PGE were originally magmatic concentrations that, within a PGE-rich horizon, crystallized with BMS late in the olivine/clinopyroxene crystallization sequence and have not been significantly transported during serpentinization and alteration.  相似文献   

4.
Summary This study reports the first documented occurrence of platinum group-minerals (PGM) in the vicinity of the Voisey’s Bay magmatic sulfide ore deposit. The PGM are present in a sulfide poor, hornblende gabbro dyke in the Southeast Extension Zone of the massive sulfide Ovoid deposit. The dyke has somewhat elevated concentrations of platinum-group elements (PGE) and gold (up to 1.95 g/t Pt, 1.41 g/t Pd, and 6.59 g/t Au), as well as Cu, Pb, Ag, Sn, Te, Bi and Sb. The PGM formed by magmatic processes and were little disturbed by subsequent infiltration of an externally-supplied hydrothermal fluid. To date, no similar PGM occurrences have been discovered in the Ovoid deposit itself. Whole rock REE patterns indicate that the dyke is geochemically related to the main conduit troctolites, which carry the bulk of the massive sulfide mineralization at Voisey’s Bay. The PGE mineralization is Pt- and Pd-rich, where the Pt and Pd occur predominantly as discrete PGM with minor Pd in solid solution in galena (average=1.8 ppm) and pentlandite (average=2 ppm). The discrete PGM are predominantly hosted by disseminated base-metal sulfides (bornite, chalcopyrite, and galena) (56 vol%) and are associated with other precious metal minerals (13 vol%) with only ∼3 vol% of the PGM hosted by silicate minerals. In whole rock samples, the PPGE (Pt, Pd, and Rh) correlate with abundances of chalcopyrite, bornite, galena, and other precious metal minerals (PMM), whereas the IPGE (Ir, Ru, and Rh) correlate with pyrrhotite and pentlandite. There are no correlations of the PGE with chlorine. Lead isotope compositions of galena associated with the PGE mineralization in the Southeast Extension Zone are broadly similar to those for galena in the Ovoid. The lead isotope compositions are much different from those in the Voisey’s Bay Syenite, which is a potential external hydrothermal fluid source. The observed Cu-rich, Pb-rich sulfide compositions and associated Pt-Pd-Au-Ag-Sn-Te-Bi-Sb assemblage in the dyke can be produced magmatically as late ISS differentiates (e.g., Prichard et al., 2004). Melting temperatures of the PGM are also consistent with a magmatic origin. Following crystallization of PGM from magmatic sulfide, an external REE-enriched hydrothermal fluid was introduced to the system, producing secondary amphibole and locally remobilizing the Pb and Sn from the sulfides hosting the PGM. Author’s address: M. A. E. Huminicki, Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X5  相似文献   

5.
The Gabbro Akarem (Late Precambrian) intrusion is concentrically zoned with a dunite core surrounded by lherzolite–clinopyroxenite enveloped by olivine–plagioclase hornblendite and plagioclase hornblendite. Cu–Ni–PGE mineralization is closely associated with peridotite, especially in the inner, olivine-rich core (dunite pipes) where net-textured and massive sulfides (pyrrhotite, pentlandite, chalcopyrite) are found in association with Al–Mg-rich spinel and Cr-magnetite. Primary magmatic textures are well preserved; however, deformation and mobilization due to shearing are locally observed. Platinum-group minerals (PGM) documented from the deposit are: merenskyite (PdTe2) and michenerite (PdTeBi), as well as palladian bismuthian melonite (Ni,Pd) (Te,Bi)2. These minerals occur in intimate association with hessite (Ag2Te) and electrum (Au0.65Ag0.31Bi0.04) in two distinct textural positions: (1) as inclusions in pyrrhotite, pentlandite, and rarely chalcopyrite and (2) at sulfide–silicate grain boundaries and on microfractures in base-metal sulfides (BMS) and olivine associated with serpentine and secondary magnetite. Textural features suggest that PGM were exsolved from monosulfide solid solution over a wide range of temperatures. Late-stage, low-temperature hydrothermal solutions led to redistribution of PGE. Mineralized samples show Ni/Cu ratios ranging from 0.2 to 2 with an average of 1.0. The (Pt + Pd + Rh)/(Os + Ir + Ru) ratio is generally >6 in most samples, and Os, Ru, and Ir are below the detection limit (2 ppb). The PGE contents show positive correlation with S only at low sulfur contents. The PGE patterns of Gabbro Akarem are similar to those of Alaskan-type deposits. Compared with stratiform deposits, Gabbro Akarem is depleted in PGE. The consistently low PGE contents of the mineralization and their uniform distribution in the ultramafic rocks despite the high sulfur content of the rock is attributed to rapid crystallization of sulfides in a highly dynamic environment. Received: 3 November 1999 / Accepted: 29 July 2000  相似文献   

6.
Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type.  相似文献   

7.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

8.
The Kaalamo massif is located in the Northern Ladoga region, Karelia, on the extension of the Kotalahti Belt of Ni-bearing ultramafic intrusions in Finland. The massif, 1.89 Ga in age, is differentiated from pyroxenite to diorite. Nickel–copper sulfide mineralization with platinoids is related to the pyroxenite phase. The ore consists of two mineral types: (i) pentlandite–chalcopyrite–pyrrhotite and (ii) chalcopyrite, both enriched in PGE. Pd and Pt bismuthotellurides, as well as Pd and Pt tellurobismuthides, are represented by the following mineral species: kotulskite, sobolevskite, merenskyite, michenerite, moncheite, keithconnite, telluropalladinite; Pt and Pd sulfides comprise vysotskite, cooperite, braggite, palladium pentlandite, and some other rare phases. High-palladium minerals are contained in pentlandite–chalcopyrite–pyrrhotite ore. Native gold intergrown with kotulskite commonly contains microinclusions (1–3 μm) of Pd stannides: paolovite and atokite. Ore with 20–60% copper sulfides (0.2–6.0% Cu) contains 5.1–6.6 gpt PGE and up to 0.13–2.3 gpt Au. Pd minerals, arsenides and sulfoarsenides of Pt, Rh, Ir, Os, and Ru are identified as well. These are sperrylite, ruthenium platarsite, hollingworthite, and irarsite; silvery gold and paolovite have also been noted. All these minerals have been revealed in the massif for the first time. The paper also presents data on the compositions of 25 PGE minerals (PGM) from Kaalamo ores.  相似文献   

9.
The Ansil Cu–Au volcanogenic massive sulfide deposit is located within an Archean-age cauldron infill sequence that contains the well-known Noranda base metal mining district. The deposit is unusual in that 17% of the massive pyrrhotite–chalcopyrite orebody is replaced by semi-massive to massive magnetite. Temporally associated with the magnetite formation are several calc-silicate mineral assemblages within the massive sulfide lens and the underlying sulfide stockwork vein system. Coarse-grained andradite–hedenbergite and ferroactinolite–ilvaite alteration facies formed in the immediate footwall to the massive magnetite–sulfide lens, whereas an epidote–albite–pyrite-rich mineral assemblage overprints the margins of the chlorite-rich stockwork zone. The epidote-rich facies is in turn overprinted by a retrograde chlorite–magnetite–calcite mineral assemblage, and the andradite–hedenbergite is overprinted first by ferroactinolite–ilvaite, followed by semi-massive to massive magnetite. The footwall sulfide- and magnetite-rich alteration facies are truncated by a late phase of the Flavrian synvolcanic tonalite–trondhjemite complex. Early phases of this intrusive complex are affected to varying degrees by calc-silicate-rich mineral assemblages that are commonly confined to miarolitic cavities, pipe vesicles and veins. The vein trends parallel the orientation of synvolcanic faults that controlled volcanism and hydrothermal fluid migration in the overlying cauldron succession. The magnetite-rich calc-silicate alteration facies are compositionally similar to those of volcanic-hosted Ca–Fe-rich skarn systems typical of oceanic arc terranes. Tonalite–trondhjemite phases of the Flavrian complex intruded to within 400 m of the base of the earlier-formed Ansil deposit. The low-Al trondhjemites generated relatively oxidized, acidic, Ca–Fe-rich magmatic–hydrothermal fluids either through interaction with convecting seawater, or by assimilation of previously altered rocks. These fluids migrated upsection along synvolcanic faults that controlled the formation of the original volcanogenic massive sulfide deposit. This is one of the few documented examples of intense metasomatism of a VMS orebody by magmatic–hydrothermal fluids exsolved from a relatively primitive composite sub-seafloor intrusion. Received: 15 April 1999 / Accepted: 20 January 2000  相似文献   

10.
The Kristineberg massive sulfide deposit is hosted by metamorphosed volcanic and subvolcanic rocks of the Palaeoproterozoic Skellefte Group. The deposit consists of: (1) two main massive sulfide horizons, the A-ores and B-ores, which dip steeply southwards and are separated by 100–150 m; and (2) the Einarsson Zone, a complex interval of Cu–Au-rich ‘stockwork‘ sulfides and small massive sulfide lenses in altered and deformed rocks near the 1,000 m level. The Einarsson Zone occurs some 20–100 m south of the B-ores. There are no definite younging indicators in the mine sequence. In many areas of the mine, the original host rocks are impossible to identify petrographically due to the abundance of secondary minerals such as quartz, chlorite, muscovite, cordierite, andalusite, phlogopite, pyrite and talc, combined with variably schistose fabrics. Application of immobile-element methods to 600 recent whole-rock chemical analyses has, however, allowed the original rock types to be identified and correlated. Rhyolite X lies immediately north of the A-ore, while andesitic to dacitic to rhyodacitic rocks make up the 100–150 m interval between the A-ore and B-ore, and massive rhyolite A lies immediately south of the B-ore. The felsic rocks are mostly of calc-alkaline affinity, excluding rhyolite X, which is transitional. The mine porphyry, which lies north of the A-ore and forms the marginal phase of the synvolcanic Viterliden Intrusive Complex, is compositionally similar to dacite and rhyodacite. Mass changes calculated for all rock types indicate that most of the volcanic rocks in the mine area are strongly depleted in Na and Ca, and have gained variable amounts of Mg and Fe, whereas Si changes range from negative to positive. Gains in Fe and changes in Si are largest within 5–10 m of the massive sulfide lenses. Cordierite-bearing schists of andesitic to felsic compositions that lie between massive sulfide lenses A and B are not as altered. The Einarsson Zone commonly shows large gains in Fe and Mg, while Si shows large gains to large losses. Immobile-element ratios indicate that very different secondary assemblages in the mine, e.g. andalusite–quartz–muscovite and cordierite–chlorite–talc, can be produced from the same precursor volcanic unit, e.g., rhyolite. Conversely, the same secondary mineral assemblage can be produced from different rocks, e.g. weakly altered andesite and strongly altered rhyolite. The common presence of cordierite + andalusite in the mine area, without anthophyllite, is unusual in the alteration systems of volcanic-hosted massive sulfide deposits, and is proposed to have formed by the metamorphic reaction of the synvolcanic alteration minerals kaolinite and chlorite to produce cordierite. Where kaolinite was in excess of chlorite, andalusite was also formed. We propose that highly acidic alteration fluids locally produced high-Al minerals such as kaolinite that either overprinted, or occurred in place of, a more typical sericite–chlorite–quartz alteration assemblage that otherwise formed near the massive sulfide lenses. Application of lithogeochemical methods to the altered, deformed and metamorphosed Kristineberg rocks has identified specific volcanic contacts with massive sulfide potential, and quantified the effects of synvolcanic hydrothermal alteration. Such an approach can increase the effectiveness of mineral exploration in metamorphosed terrains.  相似文献   

11.
Volcanic-hosted (Cu–Zn–Pb) massive sulfide mineralizations are described from four prospects in the Eastern Desert: Helgate, Maaqal, Derhib, and Abu Gurdi. Helgate and Maaqal prospects are hosted in island arc volcanics in a well-defined stratigraphic level. Massive sulfides form veins and lenses. Although these veins and lenses are locally deformed, sulfides from Helgate and Maaqal prospects show primary depositional features. They form layers and colloidal textures. Sphalerite, pyrite, chalcopyrite, and galena are the major sulfides. Gangue minerals are represented by chlorite, quartz, and calcite. The sulfide mineralizations at Helgate and Maaqal are Zn-dominated. Derhib and Abu Gurdi prospects occur as disseminations, small massive lenses, and veins along shear zones in talc tremolite rocks at the contact between metavolcanics and metasedimentary rocks. The host rocks at Derhib and Abu Gurdi are metamorphosed to lower amphibolite facies as revealed by silicate mineral assemblage and chemistry. Chalcopyrite, pyrite, sphalerite, and galena are the major sulfide minerals while pyrrhotite is less common. Recrystallization, retexturing and remobilization of sulfide minerals are reflecting postdepositional metamorphic and structural modifications. Electrum and Ag–Pb–Bi tellurides are common accessories. Gangue minerals comprise amphiboles of actinolite and actinolitic hornblende composition, talc, and chlorite. The ores at Derhib and Abu Gurdi are Cu–Zn and Zn-dominated, respectively. The distinct geological, petrographical, and geochemical differences between sulfide mineralizations at Helgate–Maaqal on one hand and Derhib and Abu Gurdi on the other hand suggest two genetic types of sulfide mineralizations; Helgate–Maaqal prospects (type 1) are similar to the Archean analogs from Canada (Noranda type), while Derhib and Abu Gurdi (type 2) show similarity to ophiolite-associated deposits similar to those described from Cyprus, Oman, and Finland. In genetic type 1, ore minerals were deposited on the seafloor; the role of postdepositional hydrothermal activity is limited. In genetic type 2, base metals were part of the ultramafic rocks and were later redistributed and mobilized during deformation to be deposited along shear zones. The dominance and diversity of tellurides in genetic type 2 highlight the role of metamorphic–hydrothermal fluids.  相似文献   

12.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

13.
In situ scanning electron microscopy–energy dispersive X-ray spectrometry analysis of platinum group minerals (PGM) and base metal sulfides in the UG2 chromitite shows that this ore body is zoned along at least ∼6 km of strike. The uppermost part of the UG2 chromitite, referred to as the leader seam, is ∼16 cm thick and has a PGM assemblage that is dominated by PGE arsenides, sulpho-arsenides, and alloys (∼70 vol.% of all PGM), which are typical secondary PGM assemblages in other segments of UG2. This is the first time such laterally persistent secondary assemblages have been identified in the UG2 chromitite, as previously, they were only known to occur adjacent to transgressive fluid-bearing structures (e.g., pipes, faults). The underlying main seam is thicker (one to nine seams totaling ∼130 cm) and has a PGM assemblage that consists mostly of Pt sulfide, Pt–Pd sulfide, Pt–Rh–Cu sulfide, laurite, and Fe–Pt alloys (∼85 vol.% of all PGM), typically regarded as primary magmatic constituents of UG2 chromitite. There are, however, some subtle vertical changes in the PGM assemblages of the main seam that include the occasional presence of secondary assemblages in the top and bottom parts. The origin of these secondary PGM assemblages is related to alteration by hydrothermal fluids and/or fluid-rich melts that infiltrated during crystallization of the UG2 and may possibly have been derived from the UG2 chromitite itself.  相似文献   

14.
Summary Polyphase, penetrative hydrothermal metasomatism in chromitites of the Campo Formoso layered intrusion produced spectacular chromite – ferrian chromite zoning and transformed the primary intercumulus silicates into a chlorite – serpentine – carbonate – talc assemblage. Alteration did not substantially modify the composition of chromite cores and the distribution of platinum-group elements (PGE) through the sequence of chromitite layers, which still are consistent with magmatic fractionation processes. Texture and composition of laurite and Os–Ir–Ru alloys included in chromite cores indicate that these PGM were not altered, and are probably magmaticin origin. In contrast, the PGM located in the intergranular chlorite matrix (laurite, Ir–Ru–Rh sulfarsenides and Pt–Pd compounds with Sb, Bi and Te) display evidence of hydrothermal reworking. These PGM are intimately intergrown with low-temperature Ni-sulfides. The paragenesis suggests that the Ni-sulfides-PGM assemblage formed at the expenses of unknown PGM precursors, which must have been originally present in the intercumulus silicate matrix. Mechanism of formation involves a sequence of dissolution-precipitation events controlled by variation of redox conditions during chromite alteration. The presence of a secondary ore mineral assemblage consisting of galena, bismuthinite, native antimony, and various Pb–Sb compounds suggests a possible contribution of fluids derived from the adjacent granite.  相似文献   

15.
董宇  魏博  王焰 《岩石学报》2021,37(9):2875-2888

金川铜镍硫化物矿床是我国最主要的铂族元素(PGE)资源产地,其矿石受热液蚀变作用影响明显,并产出多种铂族矿物(PGM)。岩浆演化和热液蚀变过程中PGE的迁移富集机制和PGM的成因,一直是研究PGE地球化学行为非常关注的问题。本文对金川铜镍硫化物矿床中PGM的研究发现,其主要类型包括含PGE的硫砷化物(硫砷铱矿)和砷化物(砷铂矿),Pd的铋化物、碲化物和硒化物,以及少量其他铂族矿物。其中,硫砷铱矿可包裹于各种贱金属硫化物(镍黄铁矿、磁黄铁矿和黄铜矿)中,表明硫砷铱矿可能结晶于早期的含As硫化物熔体,随后被包裹于硫化物熔体冷凝分异产生的单硫化物固溶体(MSS)和中间硫化物固溶体(ISS)中。硫化物熔体中的As可能主要通过地壳混染作用加入幔源岩浆。大量铋钯矿(PdBi)呈微细乳滴状包裹于黄铜矿中,为晚期ISS冷凝形成黄铜矿过程中出溶的产物。少量铋钯矿(PdBi2)呈不规则状充填于矿物裂隙,与次生磁铁矿脉紧密共生,并随矿石的蚀变程度增加,铋钯矿的化学成分由PdBi逐渐向PdBi2转变,表明这部分铋钯矿为后期热液蚀变产物。铋碲钯矿和钯的硒化物则主要产出于镍黄铁矿裂隙且与次生磁铁矿紧密共生,指示明显的热液成因。钯的硒化物的出现表明,岩浆期后酸性、高盐度、高氧逸度的富Cl-流体对金川铜镍硫化物矿床中Pd的迁移和富集起到了关键控制作用。

  相似文献   

16.
 The platinum-group mineralogy (PGM) of the chromitite from Gebel Lawi, in the southeastern desert has been investigated. The most abundant base metal sulfides (BMS) associated with the Lawi chromite are pentlandite, millerite and heazlewoodite. The major platinum-group minerals identified were as follows: laurite (IrOsRu)S2, osmian iridium (OsIr), hollingworthite (RhAsS), tellurian arsenopalladinite (PdTeSbAs), potarite (PdHg) besides cuprian palladian gold (CuPdAu), a Pd-Sb-Hg and HgTe phases. Laurite and osmian iridium occur preferentially in chromite. Os-Ir commonly forms composite PGM with laurite. Hollingworthite and tellurian arsenopalladinite are included within serpentine and, close to the base-metal sulfides, the cuprian palladian gold shares boundaries with chromite. Potarite together with the Pd-Sb-Hg and HgTe phases are embedded in serpentine. Palladium is the most abundant PGE in the Gebel Lawi chromite. A paragenetic sequence of PGM formation is described. Textural evidence indicates that Os-, Ir- and Ru-bearing PGM formed early and were followed by Rh- and Pd-bearing PGM. The concentration of all five PGE could be magmatic, but much of the PGE mineralogy except for laurite and osmian iridium in the center of chromite grains, has been modified by subsequent processes. At later stages, the environment became Te-, Sb-, As- and Hg-rich, which finally led to the formation of low-temperature alteration minerals. Received: 24 April 1995 / Accepted: 28 March 1996  相似文献   

17.
Summary The Neoproterozoic Bou Azzer ophiolite complex hosts numerous, small lenticular bodies of massive and disseminated chromite. Metallurgical-grade high-Mg and high-Cr spinels (cores with 48–62 wt% Cr2O3) reveal complex alteration patterns of successive Cr and Mn enrichment and loss of Al towards the rims, while the Mg# ratios [(Mg/(Mg + Fe2+)] remain almost constant. Concentration patterns of platinum-group elements are typical for ophiolitic chromitite poor in sulfides, with predominance of the IPGE, variable Rh, and low Pt and Pd. The most abundant platinum-group mineral is Rh-bearing laurite that occurs either included in spinel or in silicate matrix, whereas Os-Ir-Ru alloy is always included in spinel. Laurite inclusions reveal complex intergrowth textures with Rh-Ru-Pt rich alloy, and with Rh-rich sulfide. Most laurites display trends to sulfur-poor compositions leading to local formation of very fine-grained Ru-Os-Ir alloy phases. Ni-Co-Fe sulfides, arsenides and sulfarsenides devoid of PGE are associated with the alteration of chromite. Textural position and chemical composition of the base metal inclusions, as well as comparison of alteration features between chromite and accessory chromian spinel in the Co-Ni-As ores of the Bou Azzer ophiolite indicate a close connection. It is suggested that hydrothermal fluids percolated through the marginal zones of the ophiolite belt during greenschist facies metamorphism and deposited Ni-Co-Fe arsenides, sulfarsenides and minor sulfides as accessories within altered chromitites, and also in structurally favourable zones as Ni-Co-As ores. Author’s address: Dr. Frank Melcher, Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany  相似文献   

18.
The Amy Lake PGE zone is a “low-sulfide-type” Cu-(Ni-)PGE mineralization in the East Range footwall of the 1.85 Ga Sudbury Igneous Complex occurring in a 100-m-wide Sudbury Breccia belt that coincides with an impact-related major fracture zone (Bay Fault zone). Detailed hydrothermal alteration mapping, fluid inclusion, trace element, and stable isotope studies revealed a complex alteration and mineralization history in a multi-source, multi-stage Sudbury-related hydrothermal system. The two major stages of syn-Sudbury hydrothermal activity are characterized by similarly high-salinity, high-temperature fluids that are (1) locally derived from footwall granophyre bodies, and typified with high Ni/Cu and PGE/S ratios and high REE contents (magmatic–hydrothermal stage), and (2) a more voluminous Cu–Ni–PGE-rich fluid flux probably originated from the Sudbury Igneous Complex/footwall contact (hydrothermal stage). The second hydrothermal flux was introduced by brittle fractures in the area and resulted in a complex zonation of alteration assemblages and mineralization governed by local footwall composition. The Sudbury-related hydrothermal event was overprinted by shear-related epidote veining and calcite–chlorite replacement, both regionally present in the Sudbury structure. Based on analogies, the most important factors involved in the formation of hydrothermal low-sulfide mineralization are proposed to be (1) accumulation of PGE-enriched fluids, (2) large-scale brittle structures as conduits to these fluids, and (3) adequate host rock composition as a chemical trap resulting in sulfide and PGM precipitation. In environments meeting these criteria, hydrothermal PGE mineralization is known to have formed not only in the Sudbury footwall but also from mafic–ultramafic intrusions associated with primary magmatic PGE from several locations around the world.  相似文献   

19.
The division of platinum-group elements (PGE) between those hosted in platinum-group minerals (PGM) versus those in solid solution in base metal sulfides (BMS) has been determined for ores from the PGE-bearing Ni-Cu-rich Jinchuan intrusion in northwest China. All the BMS are devoid of Pt and Ir, and magmatic BMS are also barren of Rh. These PGE may have been scavenged by arsenic to form PGM during magmatic crystallization of the BMS. Pd, Os, and Ru are recorded in BMS and Pd is predominantly in solid solution in pentlandite. Unlike the fresh magmatic ores, in altered or serpentinized ores, Pd-PGM are present. Froodite is hosted in magnetite, formed during alteration of BMS, accompanied by sulfur loss and liberation of Pd. Michenerite ([Pd,Pt]BiTe), sperrylite (PtAs2), and Au-bearing PGM are located in altered silicates. Irarsite (IrAsS) occurs mainly enclosed in BMS. Padmaite (PdBiSe), identified at the junctions of magnetite and BMS, was the last PGM to form and locally partially replaces earlier non-Se-bearing PGM. We propose that padmaite formed under oxidizing conditions during late local remobilization of Se from the BMS. Se-bearing PGM are rare and our review shows they are frequently associated with carbonate, suggesting that Pd and Se can be mobilized great distances in low pH oxidizing fluids and may be precipitated on contact with carbonate. S/Se ratios are used by researchers of magmatic Ni-Cu-PGE ores to determine sulfur loss, assuming Se is immobile and representative of magmatic sulfur content. This study shows that Se as well as S is potentially mobile and this should be considered in the use of S/Se ratios.  相似文献   

20.
Ore deposits of the Charters Towers Goldfield (CTGF) are mainly hosted by fault-fill veins. Extensional (∼8% of all veins) and stockwork-like (∼3%) veins are less common and of little economic significance. Crosscutting relationships and published structural and geochronological data indicate a Late Silurian to Early Devonian timing of gold mineralization, coincident with regional shortening (D4) and I-type magmatism. Paragenetic relationships, which are uniform in veins everywhere within the CTGF, suggest that vein formation commenced with the deposition of large volumes of buck quartz (stage I), followed by buck and comb quartz, and significant pyrite and arsenopyrite precipitation (stage II). Gold was introduced during stage III, after earlier sphalerite and coincident with galena and chalcopyrite. Narrow, discontinuous calcite veins of stage IV mark the waning of gold-related hydrothermal activity or a later unrelated episode. Ore zones within the veins are everywhere composed of comb and/or gray quartz, calcite and/or ankerite and bands or clusters of fractured pyrite that are spatially associated with galena, sphalerite or chalcopyrite. Low-grade or barren vein sections, on the other hand, are mainly composed of milky buck quartz with little evidence for modification, overprinting or interaction with later fluids. Gold-related hydrothermal wall-rock alteration is symmetrically zoned, displaying proximal sericite–ankerite and distal epidote–chlorite–hematite assemblages that may be taken to imply wall-rock interaction with near neutral fluids (pH 5–6). Isocon plots assuming immobile Al, P, Ti, Y and Zr consistently indicate As, K, Pb, S and Zn enrichment and Na, Si and Sr depletion in altered wall-rock specimens relative to the least altered rocks. Alteration assemblages, quartz textures, fault rocks and published fluid inclusion and stable isotope data imply that the veins were formed under conditions of episodic fluid overpressuring (∼0.9–3.8 kbar), at a depth of ∼7 km and a temperature of ∼310°C. The published fluid inclusion data also imply that gold precipitation may have been brought about by fluid mixing. However, physi- and chemisorption of gold complexes onto sulfide surfaces may have been important depositional processes and controls on gold enrichment at the millimeter to centimeter scale, given that most gold particles are attached to the surfaces of pyrite crystals of stage II or to etch-pits and fracture surfaces within the earlier pyrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号