首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyse 147 h of single-site CCD time series photometry of the multiperiodic low-amplitude δ Scuti star XX Pyx with the aim of investigating variability at low frequencies. Part of the data were obtained in the context of the 1998 multisite campaign on XX Pyx, the results of which were described by Handler et al. We find that periodic low-frequency variations are present in the XX Pyx light curves, and we detect two frequencies at f A=0.8695 cycle d−1 and f B=1.7352 cycle d−1 , respectively, with amplitudes of 4.5 and 5.4 mmag. The low-frequency variability is intrinsic to XX Pyx, and cannot be attributed to instrumental or atmospheric effects. The near 2:1 ratio of the frequencies leads us to suggest that XX Pyx is a δ Scuti star in a binary system, with a possible binary period of 27.6 h. This is strongly supported by the detection of radial velocity variations from the re-analysis of echelle spectra obtained by Handler et al. However, in the absence of a spectroscopic period, alternative explanations of the photometric variability involving pulsation are also possible; the variations occur close to possible combination frequencies of the short-period ( δ Scuti) variations, but high Q values of 0.57 and 0.28 d suggest that the variations are not a result of normal (p-)modes. They could possibly be due to g-modes excited to observable amplitudes as a result of resonance effects. Surface features (spots) are unlikely to be the cause of the variations.
We searched for combination frequencies (  f i − f j ) , f being the normal δ Scuti frequencies detected by Handler et al., but failed to detect any.  相似文献   

2.
3.
We present the results of a three-year Johnson V and Strömgren uvby H β photometric study of the δ Scuti star BR Cancri (BR Cnc). Our data sets consist of 1293 discrete differential magnitudes in Johnson V and yellow y filters, 883 in Strömgren v and 239 in ub filters. The Fourier analysis of the data suggests four pulsation frequencies for the variable: f 1=24.978, f 2=11.358, f 3=11.808 and f 4=27.914 cycle d−1. During the three observing years, the main frequency f 1 kept its V ( y ) amplitude constant at about 6 mmag but its v amplitude seems to be changing. Amplitude variations for all the three other frequencies are also claimed. The pulsation modes of the frequencies are discussed based on the colour data. Using uvbyβ data and calibrations in the literature, we derive the physical parameters for BR Cnc.  相似文献   

4.
5.
Time-series photometry of the Hipparcos variable stars HD 199434 and 21190 is reported. Both stars are pulsators of the δ Scuti type. Reclassifications of the MK types of the stars, based on new spectrograms, are given. HD 21190 is found to be F2III SrEuSi:, making it the most evolved Ap star known. Its Strömgren photometric indices support the peculiar spectral type. It is also one of the most evolved δ Scuti stars known. Its combined Ap– δ Scuti nature makes it an important test of models of pulsation in peculiar stars recently developed by Turcotte et al., although it is more extreme than any model they examined. Physical parameters of both stars are estimated from Strömgren and H β photometry, and Hipparcos absolute magnitudes. We attempt mode identifications based on amplitude ratios and phase differences from our photometry. The dominant pulsation of HD 21190 may be an overtone radial mode. The model fits for HD 199434 are even less satisfactory, but favour an ℓ=2 mode. Given the good quality and wavelength coverage of our data, the poor results from the application of the photometric theory of mode identification may call into question the use of that technique.  相似文献   

6.
7.
8.
Recent multisite campaigns of the Delta Scuti Network have revealed 34 frequencies of pulsation for the star 4 CVn. Our present knowledge of the frequencies makes it possible to reanalyse the shorter data sets in the literature, photometric observations from 1966 to 1997.
4 CVn shows strong amplitude variability with time-scales of ten years or longer, although for neighbouring years the amplitudes usually are similar. Seven of the eight dominant modes show annual variability of ∼12 per cent. The variability increases to ∼40 per cent over a decade. The formally derived time-scale of variation of 30 years can only be a rough estimate, since this is also the length of the available data span. The variability is compared with that of FG Vir, which shows lower amplitude variability.
The cyclic behaviour of the amplitude variations excludes an evolutionary origin. There exists some evidence that a mode at 6.12 d−1, which appeared during 1996 and 1997, may have been present with small amplitudes in the 1976–1978 time period.
The pulsation mode at 7.375 d−1 exhibited the most rapid decrease found so far: the V amplitude dropped from the highest known value of 15 mmag in 1974 to 4 mmag in 1976 and 1 mmag in 1977. After that the mode has been increasing in amplitude. There exists a phase jump between 1976 and 1977, suggesting the growth of a new mode. It is interesting to note that this mode also has the strongest coupling with other modes with combination frequencies, f i ± f j . The amplitudes of these combination frequencies are also strongly variable from year to year. We speculate that power is transferred between the modes through mode-coupling.  相似文献   

9.
10.
11.
HD 23194, a member of the Pleiades, was found to pulsate with a period of about 30 min. The literature on the star is reviewed, and it is concluded that it may be a marginal Am star in a binary system. HD 95321 is an evolved Am ( ρ Puppis) star with a 5.1-h periodicity. Mode identification of its pulsation, based on multicolour photometry, suggests that the oscillation is probably non-radial with ℓ=2. We also report on the discovery of six other new δ Scuti stars, some of which may be pulsating in gravity modes.  相似文献   

12.
A multisite campaign of BI CMi was carried out with excellent frequency resolution and high photometric accuracy from 1997 to 2000, including two long observing seasons. 29 pulsation frequencies could be extracted from the 1024 h (177 nights) of photometry used. The detected frequencies include 20 pulsation modes in the main pulsation frequency range from 4.8 to 13.0 cycle d−1 (55 to 150 μHz), eight linear combinations of these frequencies, and a very low frequency at 1.66 cycle d−1. Since the value of the low frequency at 1.66 cycle d−1 cannot be identified with a linear combination of other frequencies, g-mode pulsation is suspected, but rotational modulation of abundance spots cannot be ruled out. BI CMi, which is situated near the cool edge of the classical instability strip, may be both a δ Scuti and a γ Doradus star. Another outstanding property of BI CMi is the presence of a number of close frequency pairs in the power spectrum with separations as small as 0.01 cycle d−1.
A rotational velocity of     was determined from a high-dispersion spectrum. From phase differences, the dominant modes can be identified with ℓ values from 0 to 2. The spectral type and evolutionary status of BI CMi are examined.  相似文献   

13.
We present simultaneous UBVRI photometry and high-dispersion spectroscopy of the δ Scuti star QQ Tel. At least seven periodicities are detected in the light curve, but there are likely to be many more. The line profile variations suggest that some of the observed frequencies may be due to modes of moderately high degree  (ℓ≳4)  .  相似文献   

14.
15.
16.
We present and discuss 247 high dispersion échelle spectra of the δ Scuti star 38 o 1 Eri. We find at least three periods, but all are affected by aliasing problems. We attempt to identify the modes by a technique involving both temporal and spatial pre-whitening. All modes are of high degree, probably ℓ≈4 and ℓ≈7.  相似文献   

17.
We present new multicolour photometry and simultaneous high-dispersion spectroscopy for the δ Scuti star 1 Mon. The two main periodicities in the star are still present, but the third known period is not directly detected in the new radial velocities or light variations. However, it is detected in the periodogram of the second moment of the line profile variations. We use the cross-correlation function as an approximation for the line profile variations. By computing theoretical profiles for a given mode and comparing them with phased cross-correlation profiles, we are able to determine a goodness-of-fit criterion and estimate the most probable spherical harmonic degree,     the azimuthal order, m , of the pulsation and also the angle of inclination. We then compare the relative amplitudes and phases of the photometric variations in five wavebands and obtain the best estimates of     for the two visible periodicities. We confirm the earlier determinations that the main periodicity is a radial mode and that the other periodicity is probably         We show that the line profile variations and light variations give consistent results. We point out the importance of a long wavelength range when using the photometric mode identification technique. Finally, we attempt to match the two periods with unstable modes from linear, non-adiabatic calculations. We are able to show that the principal period is well matched by either the fundamental or first overtone radial mode, but could not find a satisfactory fit to the     mode. We discuss implications for mode identification of δ Scuti stars based on what we have learned from this star.  相似文献   

18.
Only a fraction of the theoretically predicted non-radial pulsation modes have so far been observed in δ Scuti stars. Nevertheless, the large number of frequencies detected in recent photometric studies of selected δ Scuti stars allow us to look for regularities in the frequency spacing of modes. Mode identifications are used to interpret these results.
Statistical analyses of several δ Scuti stars (FG Vir, 44 Tau, BL Cam and others) show that the photometrically observed frequencies are not distributed at random, but that the excited non-radial modes cluster around the frequencies of the radial modes over many radial orders.
The observed regularities can be partly explained by modes trapped in the stellar envelope. This mode selection mechanism was proposed by Dziembowski & Królikowska and shown to be efficient for  ℓ= 1  modes. New pulsation model calculations confirm the observed regularities.
We present the s – f diagram, which compares the average separation of the radial frequencies ( s ) with the frequency of the lowest frequency unstable radial mode ( f ). This provides an estimate for the  log  g   value of the observed star, if we assume that the centres of the observed frequency clusters correspond to the radial mode frequencies. This assumption is confirmed by examples of well-studied δ Scuti variables in which radial modes were definitely identified.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号