首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
近50年乌鲁木齐浅层地温变化特征分析   总被引:1,自引:0,他引:1  
根据乌鲁木齐站1962—2011年近50a的地面和浅层日平均地温资料,采用气候倾向率、Cramer法、Yamamoto法和Mann—Kendall法进行变化趋势以及突变检验。结果表明:乌鲁木齐近50a0cm地表温度和5~20cm年平均浅层地温总体呈上升趋势,其中:1962—1985年呈下降趋势,1985年之后明显上升。年平均浅层地温在春、夏两季呈现下降趋势,尤其是在1962—1985年地温下降的趋势均达到了0.01显著性水平,秋、冬两季,则是上升趋势,其中:冬季地温在近50a增温最为显著,并且随深度增加增温的趋势减缓。1976—2001年乌鲁木齐0~20cm各层地温均处于相对偏冷的气候态,年平均地温在1986年前后发生转折,在2005年左右发生增暖的突变现象,至2011年一直处于上升趋势,但尚未出现突变时间区域。  相似文献   

2.
班玛县近30年浅层地温变化特征分析   总被引:1,自引:0,他引:1  
采用班玛县国家基本气象站1988—2017年逐月浅层地温观测资料,利用气候倾向率、累积距平、滑动平均法等统计方法,对班玛县近30a来浅层地温的变化特征进行分析。结果表明:班玛县各层地温均呈现出显著增温的趋势,其增温幅度在0.323~0.695℃/10a。其中0cm地温平均地温增加趋势最为明显,5cm平均地温升幅最小,浅层地温升温趋势随着深度的增加而增加;班玛县1988—2017年春、夏、秋、冬四季不同浅层地温的气候倾向率不尽相同,而且均呈现出逐年增加的趋势。冬季0cm地温的增温幅度最为显著,其余三季20cm地温的增温幅度最为显著;在月分布特征上,5—8月浅层地温逐渐升高,升温的趋势是随着深度的增加而递增,说明浅层地温对气候变暖的影响是随着深度的增加而增强的,9—10月地温逐渐下降,降温的趋势随着深度的增加而递减。  相似文献   

3.
利用1981-2018年德令哈市国家基本气象站浅层地温、0cm地温和气温数据资料,分析了浅层地温的年、季、月气候变化特征。结果表明:近38a德令哈市年5~20cm平均地温呈显著上升的气候趋势;春季5~20cm平均地温上升趋势最快,秋季5cm、10cm平均地温上升趋势最慢,冬季15cm、20cm平均地温上升趋势最慢;全月5cm平均地温呈上升的气候趋势,1-11月份10cm、15cm、20cm平均地温呈上升的气候趋势,12月份呈下降的气候趋势。Mann-Kendall检验法分析发现年5cm、10cm平均地温在1993年发生突变,年15cm、20cm平均地温在1994年发生突变。年、季5~20cm平均地温与0cm平均地温和平均气温呈显著的正相关性。年、季5~20cm平均地温异常偏冷年份均出现在20世纪80年代,异常偏热年份多出现在21世纪10年代。  相似文献   

4.
利用阿勒泰地区1961-2010年7个观测站暖季(5-9月)5-20cm土层的逐月平均地温资料,采用气候统计诊断分析方法,对近50a阿勒泰暖季浅层平均地温、各月平均地温的气候变化趋势及突变特点进行研究。结果表明,近50a阿勒泰地区暖季浅层地温呈上升趋势,富蕴升温幅度最大,为0.88℃/10a(P<0.01)。暖季浅层各月平均地温均呈上升趋势,升幅最大值为1.02-1.07℃/10a(P<0.01),均以富蕴或青河升温幅度最大, 7月增幅最大,9月增幅最小,各层自1981年以来增温尤为明显。1961-2010年暖季大部站点平均浅层地温在1972年发生了突变,而各月平均浅层地温大部分在20世纪60年代中期到70年代中期发生了突变。暖季5cm、10cm、15cm、20cm 4个土层温度与同期气温和地表温度均呈显著的正相关关系,二者的显著升高正是导致浅层地温呈明显升高趋势的原因。  相似文献   

5.
近58 a黔南地区5~20 cm平均地温年际变化呈上升趋势。气候倾向率随土壤深度增加升幅逐渐增加,近10 a浅层平均地温有明显增加的趋势。各层地温周期性分布不同。四季地温均呈增温趋势,随土壤深度增加气候倾向率逐渐增大。平均地温月变化呈单峰形势,暖月随深度增加地温递减,冷月随深度增加地温递增。空间上浅层地温呈自北向南逐渐升高的分布特征。  相似文献   

6.
本文利用1961-2010年巴楚0~40cm逐月平均地温资料,采用气候倾向率和累积距平气候统计方法,探讨近50a巴楚县不同深度的地温变化特征,研究巴楚县气候变化对当地农、林果业生产以及生态环境的影响。结果表明:这半世纪来,巴楚县浅层地温的年和季节平均值呈现出不同程度的上升趋势,其中40cm的年升温率和夏季的升温率最大。近10a来,巴楚县地温明显升高,浅层地温的年、季节平均或平均最高、最低等均明显高于前40a。随着巴楚县地温的上升,年极大冻土深度的下降趋势也很明显,当地冬小麦返青期和林果业的树木萌动期提前。  相似文献   

7.
以古尔班通古特沙漠腹地为试验区,利用2009年9—10月3种不同植被覆盖下浅层地温数据,分析了秋季地温的变化特征以及降水和人类活动对地温的影响。结果表明:秋季地温呈现波动的下降过程,梭梭地温降幅达8.1℃,为最大。晴天时,梭梭、苜蓿、麻黄的地温日变化为标准的波形,变化过程明显。而多云天气时的地温白天上升幅度小,甚至下降,其日变化幅度远小于晴天。地温的昼夜变化过程差异明显,白天地温均值高于夜间。此外降水、灌溉使得地温下降,在随后的1~2d后逐步回升,而苜蓿的收割导致地温日变化更加明显。天气状况、降水、灌溉等可以造成地温峰值位相提前或滞后,但谷值的位相却相对稳定在08时前后。  相似文献   

8.
山东春季降水的时空变化特征分析   总被引:16,自引:4,他引:16  
高留喜  刘秦玉 《高原气象》2005,24(5):811-815
根据山东省81个地面站1961-1998年共38年的降水资料,应用自然正交函数展开(EOF)方法,分析了山东省38年春季月、季降水量的时空变化特征。根据降水方差累积贡献率和空间分布特征,指出前3个典型场基本能反映山东省春季季降水分布的主要特征,其贡献率高达81.30%,据此得出山东省春季降水分布类型:总体一致型、东南-西北差异型和西南-东北差异型。山东春季降水空间分布可分为4个区,南部区:日照、临沂、枣庄及济宁;半岛区:烟台、威海、青岛和潍坊东部;西部区:荷泽、聊城;北部区:德州、滨州、东营、济南、泰安、莱芜、淄博和潍坊西部。同旱(涝)是山东春季各月降水的基本型。山东春季易出现干旱,春季降水存在明显的年际变化,有4.8~6年的振荡周期。  相似文献   

9.
天山中段雪岭云杉林浅层地温特征分析   总被引:1,自引:0,他引:1  
森林地温与树木生长密切相关,对地温的研究有利于利用森林气象资料做好森林气象服务工作。本文利用新疆天山雪岭云杉林2009年的地温数据,分析不同深度地温的日变化、季节变化及年变化规律。结果表明:20 cm以上各层地温日变化均呈正弦曲线,近地表变化趋势明显,随着深度的增加,其变幅急剧减小;40 cm地温始终高于10 cm和20 cm地温;不同深度地温日变化的相位存在明显差异。夏季地温呈现随深度增加地温降低的垂直变化特征;冬季不同深度的地温呈现随深度增加地温升高的垂直变化特征。3月中旬至8月中旬,近地层的地温高于深层,而在8月中旬至翌年3月中旬,深层地温高于表层。  相似文献   

10.
河北石家庄浅层地温变化特征   总被引:4,自引:0,他引:4  
利用石家庄地区5个观测站1981~2010年逐日浅层地温观测数据,分析讨论了该地区浅层地温的变化特征及其变化周期。结果表明:从波动变化情况看,年和各季节平均浅层地温波动变率随土层深度加深依次减小,春季波动变率最大,冬季最小;年和各季节平均浅层地温波动幅度随土层深度加深依次减小,减小程度随土层深度加深依次减弱,夏季波动幅度最大,冬季最小;从垂直变化情况看,年平均浅层地温随土层深度加深依次升高,春、夏季随土层深度加深依次降低,秋、冬季随土层深度加深依次升高;从变化趋势情况看,年平均浅层地温均呈现增温趋势,其中,冬季增温最为明显,增温幅度随土层深度加深依次减小,减小程度随土层深度加深依次减弱;平均浅层地温存在9~10 a的低频振荡周期和4~6 a的高频振荡周期,其中,平均5 cm地温低频振荡周期振幅最大,平均10 cm地温高频振荡周期振幅最小。  相似文献   

11.
利用2016—2021年春季(3—5月)陕西98个国家级地面气象观测站逐日观测资料,运用BP神经网络构建了陕西春季不同区域(陕北、关中、陕南)不同月份(3、4、5月)不同土壤深度(5、10、15、20 cm)地温预测模型,并利用2022年数据进行模型预测检验。研究结果表明:模型预测的各深度日平均地温在陕北、关中、陕南地区预测准确率>95%,且整体表现出土壤深度越深预测准确率越高的趋势,10 cm日平均地温预测准确率>98%,15、20 cm日平均地温预测准确率>99%;各深度日平均地温在陕北、关中、陕南地区预测值与实测值的均方根误差≤10 ℃、平均绝对误差≤08 ℃,均方根误差和平均绝对误差整体表现出土壤深度越深误差值越小的趋势;模型预测精度比较理想,可用于陕西春季浅层地温预报业务,为春播及果树花期预报提供技术支持。  相似文献   

12.
浅层地温变化与短期暴雨天气   总被引:1,自引:0,他引:1  
一、前期浅层地温变化与后期暴雨的实例分析 1980年6月28—30日受高空冷低压槽和地面冷锋影响,造成我县大暴雨天气,28日雨量为108.4毫米,过程雨量为171.0毫米。暴雨前本站15厘米深度平均地温由24.9℃上升到29.3℃,地面最低温度由19.4℃上升到24.7℃,14时水汽压由21.5毫巴上升到31.0毫巴。由于高空槽后不断有冷空气补充,使过程持续三天。从实例可以看出,浅层地温变化是影响短期暴雨天气的重要因子之一。根据汤懋苍等的研究:Z_s(?),K_s为土壤导热系数,它的变化范围大致是3×10~(-3)—7×10~(-3)厘米~2/秒,代入上述公式计算可得到均幅深度(Z_s)与周期(T)的关系,见表1。当T为1—2天的天气变化时,其Z_s的变化大致在15厘米。结合历  相似文献   

13.
为了掌握沈阳地区地温变化规律,并提供更好的大田地温预报服务,降低播种风险,提高粮食生产安全,利用沈阳地区7个气象站点1981-2015年地温和气温数据,运用数理统计方法,分析近35 a地温和气温的变化规律,建立了春播期(4月和5月)地温预报模型。结果表明:1981-2010年,年代际温度呈上升趋势,气温的变化导致地温的变化也更加明显,气温和各层地温的气候倾向率为0.426-0.549℃/10 a,4-10月0-5 cm、5-10 cm、10-20 cm每一层的地温差为1.5℃、0.5℃和0.5℃;0-20 cm地温以及气温在1996年前后发生了突变;春播期西部地区0 cm、5 cm、10 cm的地温和气温差值4-5月由较低转为较高;地温预报模型t检验的P值在P=0.01水平差异均不显著,相对误差控制在±10%以内,可以用于沈阳春播期(4月和5月)地温预测。  相似文献   

14.
小兴安岭五营林区各层年平均地温中,地表温度最高,20cm浅层地温最低。10月一次年3月地表及浅层土壤热量由下向上传导,在20cm深度左右出现逆温层;而4-9月热量传导则由上而下。年际变化和日变化中,地温峰值均随着深度的增加而变小,并且出现的月份存在滞后现象,日变化中峰值出现的时间与气温相比具有一定的前移性。  相似文献   

15.
西藏浅层地温气候特征分析及与降水的关系   总被引:12,自引:0,他引:12  
选择了西藏地区建站早、有代表性的15个站1961 ̄1996年逐月10cm、20cm、40cm三个层次的地温资料以及月降水量资料。运用EOF方法分析了各层地温的时空特征,并对不同时段的地温场和降水场进行SVD分解,并讨论了前期地温变化,尤其是10cm地温变化与我区降水之间的关系。分析表明,浅层地温最高值雅鲁藏布江中游地区出现在6月,其它各地一般出现在7月,最低值全区均出现在1月。地温年较差雅鲁茂布江  相似文献   

16.
中国黄土高原地区春季气温时空特征分析   总被引:11,自引:10,他引:11  
张定全  王毅荣 《高原气象》2005,24(6):898-904
利用黄土高原40年的气温资料,采用小波分析方法,分析了该区域的春季气温变化特征。结果表明:黄土高原春季气温变化存在3个特征区域;在1991/1992年发生突变,突变后气温突然转暖,突变之前气温以负距平为主,突变后以正距平为主;1980年代中期最冷,1990年代后期最暖;且存在2年、3年和5~6年周期振荡,3年周期振荡最显著。春季逐月气温空间变化的主要特征是全区一致,各月气温以升温为主,1990年代最为明显,升温速度最大区和年际变化幅度最大区主要在黄土高原中部,准5年为主的年际振荡和10~12年年代际振荡在月气温变化中显著。  相似文献   

17.
浅层地温变化规律初探王同国(金塔县鼎新气象站735305)浅层地温(5-20cm,下同)变化,是由于地表受太阳辐射和有效辐射通过热传导而进行的,其变化落后于空气温度。浅层地温变化的一般规律是:深度愈深变化愈缓慢、愈落后、幅度愈小。一般情况下02时浅层...  相似文献   

18.
本文利用和龙市气象局2005-2011年的地面气象观测资料,对各层地温随时间的日变化和年变化进行研究,并根据气候倾向率对各层地温的月、季、年变化进行分析。结果表明:地面温度日变化的最大值在13时左右,最小值在5时左右。地面温度的年变化:月平均最高温度出现在7-8月份,月平均最低温度出现在1-2月份,平均地温总体上都呈上升趋势。  相似文献   

19.
采用南海区气象站2010年1、2和12月有冷空气影响和无冷空气影响的天气条件下,对地温资料进行分析,包括地温的日变化及垂直结构的日变化分析。结果发现:在冬季没有冷空气影响的各天气条件下,地面温度及浅层地温均呈正弦曲线变化,只是振幅不同、位相不同、周期不同。浅层地温在有冷空气影响下的阴天或雨天不呈正弦曲线变化。有冷空气影响下的阴天和雨天,地温的日变化特征较相似。在各天气条件下80 cm以下土壤深度的地温日变化很小。在晴天或阴天的天气条件下,40 cm以下的深层地温随深度的增加而升高,但在雨天的情况下,清晨时段深层地温不再随深度的增加而升高,而是在80 cm土壤深度处有一个低值区。  相似文献   

20.
通过对太原基准站2009年1月一2010年12月的草温与地温同步观测资料分析,总结出草温与地温在不同季节的气候变化特征,分析了草温与地温的差异,简单阐述了产生不同特征的原因。分析表明,草温年平均值小于地温年平均值,草温各月的年平均值均小于地温;地温极端最高温度高于草温极端最高温度,草温极端最低温度低于地温极端最低温度;草温的平均最高温度在冬、秋季高于地温,草温的平均最低温度全年低于地温;草温在不同季节变化有所差异,在冬季、秋季草温的平均温度的振幅大于地表温度,草温的低温低,高温高;在秋季草温变化与冬季相仿,但幅度略小于冬季;春季、夏季草温与地温对比趋势相同,草温的高温低,低温持平,夏季草温与地温对比,草温的低温略低,高温偏高胜于春季。 草温的日较差常常大于地温的日较差,出现上述差异的主要原因:①传感器安装环境不同。②被测量的介质热容量不同,热容量愈大,物质的温度变化愈小,反之依然。③被测介质吸收到的辐射量、热传导不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号