首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on the diffusion coefficientK zand the concentration of H2S in the Black Sea are used to compute the depth distribution of the vertical flux, and the intensity of the H2S sources and sinks. On average, the total production of H2S in the Black Sea reaches 37×106 t/year. The main bulk of H2S is produced not at the bottom, but in the layer of 450–1300 m. Destruction of H2S prevails above the 400 m layer. Dissolved oxygen penetrating the H2S zone can oxidize only half of the hydrogen sulphide produced in the sea.Translated by Mikhail M. Trufanov.  相似文献   

2.
During New Euxinian time when sea level dropped below the sill connecting the Black and Marmara seas, the Black Sea became isolated and freshwater sediments were deposited. Now it is a semieuxinic basin with the oxic/anoxic boundary at 100–150 m. The seasonal changes in sedimentation are preserved in the form of laminated sequences. The counting of varves in southeastern Black Sea cores show the chronology of the O2/H2S interface. The age of the Holocene sapropel along the eastern margin ranges from 4000 to 1000 yr BP in deep water and 2500—1000 yr BP in shallower water. Sapropel formation started at 3650 yr BP at a water depth of 2200 m.  相似文献   

3.
The fluorescence of dissolved organic matter in seawater   总被引:3,自引:0,他引:3  
A total of 28 vertical profiles of seawater fluorescence was measured in the Sargasso Sea, the Straits of Florida, the Southern California Borderlands, and the central Pacific Ocean. In all cases, surface seawater fluorescence was low as a result of photochemical bleaching which occurs on the timescale of hours. Fluorescence of deep water was 2–2.5 times higher than that of surface waters, and was constant, implying a long residence time for fluorescent organic matter, possibly of the order of thousands of years. Fluorescence correlates well with nutrients (NO3, PO43−) in mid-depth waters (100–1000 m) in the Sargasso Sea and the central North Pacific, consistent with results in the central Pacific and the coastal seas of Japan. This suggests that regeneration or formation of fluorescent materials accompanies the oxidation and remineralization of settling organic particles.The various sources and sinks of fluorescent organic matter in the global oceans are assessed. The major sources are particles and in situ formation; rivers, rain, diffusion from sediments, and release from organisms are minor sources. The major sink is photochemical bleaching.  相似文献   

4.
We found high potential activities of alkaline phosphatase associated with particles (0.2 μm or greater size fraction) in deep waters (1000–4000 m) of the central Pacific Ocean. The potential enzyme activity at depth (0.03 – 0.3 nM h−1) was up to 50% of that at the surface (0–125 m). In contrast, activities of α- and β-d-glucosidase in the deep layer were low (generally less than 1 % of those in the upper layer), yielding up to two orders of magnitude difference in the ratio of alkaline phosphatase and α- and β-d-glucosidase activities with depth. It is unlikely that the phosphatase is actively produced by microorganisms inhabiting the deep-sea environment, where labile organic carbon supply is limited and phosphate concentration is high (2.4 – 3.0 AM). Instead, deep-water phosphatase is probably supplied by rapidly sinking particles and their subsequent fragmentation and dissolution. Different distributions of phosphatase and glucosidase indicate that sinking particles of phytoplankton origin are an important source of alkaline phosphatase enzymes in the deep sea.  相似文献   

5.
Using data collected during cruises of the JGOFS equatorial Pacific Study in March/April and October of 1992 at the equator (140°W), we examine the downward transport of carbon by three size classes of die] migrant mesozooplankton (200–500 gm, 500–1000 μm and 1000–2000 gm). In addition to respiratory carbon flux, we consider the flux due to mortality of migrators below the euphotic zone. Diel migrant mesozooplankton biomass was estimated from the difference between nighttime and daytime biomass within the euphotic zone. Except for a four-day period early in the March/April cruise, mesozooplankton nighttime biomass was significantly larger than daytime biomass within the euphotic zone during both cruises. We estimate that the downward flux of carbon from the euphotic zone due to mesozooplankton die] vertical migrators was an average of 0.6 mmol Cm−2 d−1 and 1.1 mmol C m−2 d−1 during the March/April and October cruises, respectively. Addition of this flux to the gravitational particle sinking flux estimated from234Th measurements during the same period results in a 31 % increase in the carbon export flux from the euphotic zone in the equatorial Pacific during the March/April cruise and a 44% increase in the October cruise. The migratory flux is strongly dependent on whether feeding takes place below the euphoric zone, the length of time migrators spend in the deep waters, and the mortality rate of migrators.  相似文献   

6.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

7.
New sour pools have recently found in the Lower Triassic Feixianguan Fm carbonate reservoirs in the East Sichuan Basin in China with H2S up to 17.4% by volume. A recent blowout from a well drilled into this formation killed hundreds of people as a result of the percentage concentrations of H2S. In order to assess the origin of fatal H2S as well as the cause of petroleum alteration, H2S concentrations and the isotopes, δ34S and δ13C have been collected and measured in gas samples from reservoirs. Anhydrite, pyrite and elemental sulphur δ34S values have been measured for comparison. The high concentrations of H2S gas are found to occur at depths >3000 m (temperature now at 100 °C) in evaporated platform facies oolitic dolomite or limestone that contains anhydrite nodule occurrence within the reservoirs. Where H2S concentrations are greater than 10% its δ34S values lie between +12.0 and +13.2‰ CDT. This is within the range of anhydrite δ34S values found within the Feixianguan Fm (+11.0 to +21.7‰; average 15.5±3.5‰ CDT). Thus H2S must have been generated by thermochemical sulphate reduction (TSR) locally within the reservoirs. Burial history analysis and fluid inclusion data reveal that the temperature at which TSR occurred was greater than about 130–140 °C, suggesting that the present depth-temperature minimum is an artifact of post-TSR uplift. Both methane and ethane were actively involved in TSR since the petroleum became almost totally dry (no alkanes except methane) and methane δ13C values become significantly heavier as TSR proceeded. Methane δ13C difference thus reflects the extent of TSR. While it is tempting to use a present-day depth control (>3000 m) to predict the distribution of H2S in the Feixianguan Fm, this is an invalid approach since TSR occurred when the formation was buried some 1000–2000 m deeper than it is at present. The likelihood of differential uplift across the basin means that it is important to develop a basinal understanding of the thermal history of the Feixianguan Fm so that it is possible to determine which parts of the basin have been hotter than 130–140 °C.  相似文献   

8.
The concentration of carbon disulfide (CS2) in surface water and relevant hydrographic parameters were determined in coastal waters of the eastern USA (Delaware Bay and Chesapeake Bay, including the Potomac River; 7–11 September 1986). The CS2 concentration varied extensively along the cruise track, from 4 to 510 pmol S(CS2) l−1 (n = 103). The average values in estuarine, shelf, and oceanic waters were found to be 118 ± 100 pmol S(CS2) l−1 (n = 54), 51 ± 34 pmol S(CS2) l−1 (n = 14), and 28 ± 12 pmol S(CS2) l−1 (n = 35), respectively. To help interpret the geochemical behavior of CS2, we analyzed the depth distribution of CS2 in the North Atlantic Ocean during an earlier cruise (23 April–2 May 1986). In most cases, these depth profiles show a near-surface maximum at about 10–20 m depth and a relatively steep gradient below this maximum. Based on the distribution pattern in the water column and evidence provided by earlier workers, we propose that diffusion of CS2 from bottom sediments may contribute to CS2 levels in surface seawater. The atmospheric concentration of CS2 was also investigated at some locations during the September cruise. Except during periods when there was a significant anthropogenic input, the concentration of CS2 in air was generally in the range of 4–15 pptv (parts per trillion by volume) with a mean of 10.4 ± 4.0 pptv (n = 10). The calculated sea-to-air emission rates of CS2 at each of our sampling stations show a decreasing trend across estuarine, shelf, and oceanic areas, in agreement with the trend in surface water concentrations.  相似文献   

9.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

10.
The thermodynamics and kinetics of the H2S system in natural waters have been critically reviewed. Equations have been derived for the solubility and ionization of H2S in water and seawater as a function of salinity, temperature and pressure. Pitzer parameters for the interaction of the major cations (Na+, Mg2+ and Ca2+) with HS have been determined to allow one to calculate values of pK1* in various ionic media. The limited data available for the interaction of trace metals for HS are summarized and future work is suggested.The kinetics of oxidation of H2S have also been examined as a function of pH, temperature, and salinity. The discrepancies in the available data are largely due to the different [O2]/[HS−] ratios used in various studies. Over a limited pH range (6–8) the pseudo first order rate constant for the oxidation is shown to be directly proportional to the activity of HS. Further studies are suggested to examine the effect of ionic media and temperature on the rate of oxidation.  相似文献   

11.
Hydrographic changes in the Labrador Sea, 1960–2005   总被引:1,自引:0,他引:1  
The Labrador Sea has exhibited significant temperature and salinity variations over the past five decades. The whole basin was extremely warm and salty between the mid-1960s and early 1970s, and fresh and cold between the late 1980s and mid-1990s. The full column salinity change observed between these periods is equivalent to mixing a 6 m thick freshwater layer into the water column of the early 1970s. The freshening and cooling trends reversed in 1994 starting a new phase of heat and salt accumulation in the Labrador Sea sustained throughout the subsequent years. It took only a decade for the whole water column to lose most of its excessive freshwater, reinstate stratification and accumulate enough salt and heat to approach its record high salt and heat contents observed between the late 1960s and the early 1970s. If the recent tendencies persist, the basin’s storages of salt and heat will fairly soon, likely by 2008, exceed their historic highs.The main process responsible for the net cooling and freshening of the Labrador Sea between 1987 and 1994 was deep winter convection, which during this period progressively developed to its record depths. It was caused by the recurrence of severe winters during these years and in its turn produced the deepest, densest and most voluminous Labrador Sea Water (LSW1987–1994) ever observed. The estimated annual production of this water during the period of 1987–1994 is equivalent to the average volume flux of about 4.5 Sv with some individual annual rates exceeding 7.0 Sv. Once winter convection had lost its strength in the winter of 1994–1995, the deep LSW1987–1994 layer lost “communication” with the mixed layer above, consequently losing its volume, while gaining heat and salt from the intermediate waters outside the Labrador Sea.While the 1000–2000 m layer was steadily becoming warmer and saltier between 1994 and 2005, the upper 1000 m layer experienced another episode of cooling caused by an abrupt increase in the air-sea heat fluxes in the winter of 1999–2000. This change in the atmospheric forcing resulted in fairly intense convective mixing sufficient to produce a new prominent LSW class (LSW2000) penetrating deeper than 1300 m. This layer was steadily sinking or deepening over the years following its production and is presently overlain by even warmer and apparently less dense water mass, implying that LSW2000 is likely to follow the fate of its deeper precursor, LSW1987–1994. The increasing stratification of the intermediate layer implies intensification in the baroclinic component of the boundary currents around the mid-depth perimeter of the Labrador Sea.The near-bottom waters, originating from the Denmark Strait overflow, exhibit strong interannual variability featuring distinct short-term basin-scale events or pulses of anomalously cold and fresh water, separated by warm and salty overflow modifications. Regardless of their sign these anomalies pass through the abyss of the Labrador Sea, first appearing at the Greenland side and then, about a year later, at the Labrador side and in the central Labrador Basin.The Northeast Atlantic Deep Water (2500–3200 m), originating from the Iceland–Scotland Overflow Water, reached its historically freshest state in the 2000–2001 period and has been steadily becoming saltier since then. It is argued that LSW1987–1994 significantly contributed to the freshening, density decrease and volume loss experienced by this water mass between the late 1960s and the mid 1990s via the increased entrainment of freshening LSW, the hydrostatic adjustment to expanding LSW, or both.  相似文献   

12.
The concentrations of228Ra in surface waters of the Seto Inland Sea were determined. Surface waters from the central region of the Seto Inland Sea, Hiuchi Nada and Bingo Nada, contained concentrations of228Ra of 655–811 dpm/1000 l which were 100 times higher than those obtained in the Pacific Ocean. These high concentrations of228Ra must be supported by a228Ra flux from the bottom sediment. The lower limit of this flux was estimated to be more than 0.16 dpm cm–2 y–1. The228Ra concentrations decreased markedly from central regions of the Seto Inland Sea to about 18 dpm/1000 l in the Kii and the Bungo Channels as salinity increased. Using a box model and the228Ra data, the mean residence time of sea water in the Seto Inland Sea with respect to the exchange with the open ocean water was estimated to be less than 10 y, and the most probable value is the order of several years.  相似文献   

13.
The magnitude of the exchange flux at the water–sediment interface was determined on the basis of the ammonia concentration gradient at the near-bottom water–interstitial interface and Fick's first law. It was established that in Puck Bay, ammonia almost always passes from the sediment to water. Ammonia flux varied from 5 to 1434 μmol NH4-N m−2 day−1. In total,c. 138·2 tonneammonia year−1pass from sediments of Internal Puck Bay to near-bottom water, the equivalent value for External Puck Bay being 686·9 tonne year−1. In total, about 825 tonne ammonia year−1passes from the sediment to near-bottom water of Puck Bay. In interstitial waters, ammonia occurred in concentrations varying over a wide range (3–1084 μmol NH4-N dm−3).The basic factors affecting the magnitude of ammonia concentration in interstitial waters included: oxidation of organic matter, type of sediment, and inflow of fresh underground waters to the region examined.This paper involves preliminary studies only and constitutes a continuation of the studies on ionic macrocomponents and phosphorus in interstitial waters of Puck Bay undertaken previously.  相似文献   

14.
A new deep-sea laser Raman spectrometer (DORISS—Deep Ocean Raman In Situ Spectrometer) is used to observe the preferential dissolution of CO2 into seawater from a 50%–50% CO2–N2 gas mixture in a set of experiments that test a proposed method of CO2 sequestration in the deep ocean. In a first set of experiments performed at 300 m depth, an open-bottomed 1000 cm3 cube was used to contain the gas mixture; and in a second set of experiments a 2.5 cm3 funnel was used to hold a bubble of the gas mixture in front of the sampling optic. By observing the changing ratios of the CO2 and N2 Raman bands we were able to determine the gas flux and the mass transfer coefficient at 300 m depth and compare them to theoretical calculations for air–sea gas exchange. Although each experiment had a different configuration, comparable results were obtained. As expected, the ratio of CO2 to N2 drops off at an exponential rate as CO2 is preferentially dissolved in seawater. In fitting the data with theoretical gas flux calculations, the boundary layer thickness was determined to be  42 μm for the gas cube, and  165 μm for the gas funnel reflecting different boundary layer turbulence. The mass transfer coefficients for CO2 are kL = 2.82 × 10− 5 m/s for the gas cube experiment, and kL = 7.98 × 10− 6 m/s for the gas funnel experiment.  相似文献   

15.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

16.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   

17.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

18.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

19.
New data are reported on the sulfur isotope composition and concentration of sulfide and sulfate in the upper part of the Black Sea anoxic zone as a function of the potential water density. The observations were performed at a station with the coordinates 44.489° N and 37.869° E three times a week every two days. A local negative deficiency in sulfate concentration up to 1.7% related to the sulfate reduction processes was recorded. This anomaly in sulfate concentration was short-lived and did not affect the sulfur isotope composition. In the upper part of the anaerobic zone, the δ34S(SO4) value varied from 21.2 to 21.5‰, which could have occurred from mixing of water masses from the oxic zone (21.1‰) and the Bottom Convective Layer (23.0 ± 0.2‰). The sulfur isotope composition of sulfide ranged from ?40.8% at a depth of 250 m to ?39.4‰ at the upper boundary of the anoxic zone with a H2S content of only 2.7 μM. Two models (mass balance and fractionation of sulfur isotopes using the Rayleigh equation) are considered to explain the differences in δ34S(H2S) values observed.  相似文献   

20.
The East/Japan Sea is a mid-latitude marginal sea that has undergone dramatic changes during the last 50–60 years. One of the most prominent characteristics of these changes is a rapid decrease in the amount of dissolved oxygen in deep waters. As a consequence of these changes, some investigators have even argued that the East/Japan Sea might become an anoxic sea in the next 200 years. While the causes of these changes are still under investigation, it has been shown that they are mainly due to modifications in the mode of the deep water ventilation system in the East/Japan Sea: a slowdown and complete cessation of bottom water formation accompanied by an enhancement of upper water formation instead. A simple moving-boundary box model (MBBM) was developed in order to analyze and quantify the processes involved in such changes over the last 50–60 years. Using a MBBM, we estimated the levels of several conservative chemical tracers (CFCs, Tritium, SF6, 137Cs) and bioactive tracers (oxygen and phosphate) in the deep water masses of the East/Japan Sea, comparing these with the historical data available, and making predictions for the near future. The model predicts that the East/Japan Sea should remain well-oxygenated, despite recent rapid oxygen decreases in its deep waters, accompanied by such structural changes as a shrinking of its oxygen-depleted deeper waters and an expansion of its oxygen-rich upper waters over the next few decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号