首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model.A simplified nonlinear mathematical model is first employed to represent a midwater trawl system,and then a T-S fuzzy model is adopted to approximate the nonlinear system.Since the strong nonlinearities and the external disturbance of the trawling system,a mixed H 2 /H ∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory.The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion.In order to validate the proposed control method,a computer simulation is conducted.The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the external disturbance caused by wave and current.  相似文献   

2.
Li-Jun Zhang  Xue Qi 《Ocean Engineering》2011,38(13):1430-1438
An adaptive output feedback controller based on neural network feedback-feedforward compensator (NNFFC) which drives a surface ship at high speed to track a desired trajectory is designed. The tracking problem of the surface ship at low speed has been widely investigated. However, the coupling interactions among the forces from each degree of freedom (DOF) have not been considered in general. Furthermore, the influence of the hydrodynamic damping is also simplified into a linear form or neglected. On the contrary, coupling interactions and the nonlinear characteristics of the hydrodynamic damping can never be neglected in high speed maneuvering situation. For these reasons, the influence of the nonlinear hydrodynamic damping on the tracking precision is considered in this paper. Since the hydrodynamic coefficients of the surface ship at high speed are very difficult to be accurately estimated as a prior, it will be compensated by NNFFC as an unknown part of the tracking dynamics system. The stability analysis will be given by the Lyapunov theory. It indicates that the proposed control scheme can guarantee that all the signals in the closed-loop system are uniformly ultimately bounded (UUB), and numerical simulations can illustrate the excellent tracking performance of the surface ship at high speed under the proposed control scheme.  相似文献   

3.
《Ocean Engineering》2006,33(11-12):1413-1430
This paper presents the design of an adaptive input–output feedback linearizing dorsal fin control system for the yaw plane control of low-speed bio-robotic autonomous underwater vehicles (BAUVs). The control forces are generated by cambering two dorsal fins mounted in the vertical plane on either side of the vehicle. The BAUV model includes nonlinear hydrodynamics, and it is assumed that its hydrodynamic coefficients as well as the physical parameters are not known. For the purpose of design, a linear combination of the yaw angle tracking error and its derivative and integral is chosen as the controlled output variable. An adaptive input–output feedback linearizing control law is derived for the trajectory control of the yaw angle. Unlike indirect adaptive control, here the controller gains are directly tuned. The stability of the zero dynamics is examined. Simulation results are presented for tracking exponential and sinusoidal yaw angle trajectories and for turning maneuvers, and it is shown that the adaptive control system accomplishes precise yaw angle control of the BAUV using dorsal fins in spite of the nonlinearity and large uncertainties in the system parameters.  相似文献   

4.
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation.The formation is achieved by the follower to track a virtual target defined relative to the leader.A robust adaptive target tracking law is proposed by using neural network and backstepping techniques.The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces,nonlinear damping,unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning.Based on Lyapunov analysis,the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin.Simulation results demonstrate the effectiveness of the control strategy.  相似文献   

5.
Wang  Bing-zhen  Hu  Teng-yan  Guo  Yi  Zhang  Yuan-fei 《中国海洋工程》2020,34(2):223-231
Based on blade element momentum theory and generator characteristic test, a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established. The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied, and the influence of the pitch angle on the matching is analyzed. For the problem of maximum power output in case of low current speed and limiting power in high current speed, the relation between optimal pitch angle and output power is analyzed. On the basis of dynamic characteristic analysis, the variable pitch control strategy is developed. The performance of the turbine under various tidal conditions is simulated. The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed, and achieve the goal of limited power at high current speed.  相似文献   

6.
Qiao  Dong-sheng  Yin  Li  Yan  Jun  Tang  Wei  Ning  De-zhi  Li  Bin-bin  Ou  Jin-ping 《中国海洋工程》2021,35(5):700-711

The maximum predicting error of the commonly used passive truncated mooring system method may reach 30% due to the difference of dynamic characteristics between the truncated and full-depth mooring line. In this paper, the experimental strategy called three-parameter (displacement, velocity and acceleration) active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force, and the realization of active truncated mooring system for model test is studied theoretically. The influences of three-parameter and one-parameter (displacement) active control strategies on the compensation effects are compared by numerical study. The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system, laying a good foundation for the following physical model test of active truncated mooring system.

  相似文献   

7.
以正在研制的水平轴潮流能发电装置为对象,开展了工作流程控制方法的研究工作。建立了基于叶素-动量理论的动力特性仿真模型;利用仿真模型考察了发电装置的启动转矩和转速特性,以及流速大于额定流速条件下的功率限定问题,制定了基于发电机输出电压的启动控制策略和基于发电机输出功率的功率限定控制策略。根据控制策略,设计了装置的控制流程。结合潮流变化情况,对控制流程进行了仿真。仿真结果表明,基于发电机输出电力参数的控制流程能够较好地实现对发电装置的控制。  相似文献   

8.
K. D. Do  J. Pan  Z. P. Jiang 《Ocean Engineering》2004,31(16):1967-1997
This paper proposes a nonlinear robust adaptive control strategy to force a six degrees of freedom underactuated underwater vehicle with only four actuators to follow a predefined path at a desired speed despite of the presence of environmental disturbances and vehicle’s unknown physical parameters. The proposed controller is designed using Lyapunov’s direct method, the popular backstepping and parameter projection techniques. The closed loop path following errors can be made arbitrarily small. Interestingly, it is shown that our developed control strategy is easily extendible to situations of practical importance such as parking and point-to-point navigation. Numerical simulations are provided to illustrate the effectiveness of the proposed methodology.  相似文献   

9.
In this paper, the problem of tracking a desired motion trajectory for an underwater vehicle-manipulator system without using direct velocity feedback is addressed. For this purpose, an observer is adopted to provide estimation of the system's velocity needed by a tracking control law. The combined controller-observer scheme is designed so as to achieve exponential convergence to zero of both motion tracking and estimation errors. In order to avoid representation singularities of the orientation, unit quaternions are used to express the vehicle attitude. Implementation issues are also considered and simplified control laws are suggested, aimed at suitably trading off tracking performance against reduced computational load. Simulation case studies are carried out to show the effectiveness of the proposed controller-observer algorithm. The obtained performance is compared to that achieved with a control scheme in which the velocity is reconstructed via numerical differentiation of position measurements. The results confirm that the chattering on the control commands is significantly reduced when the controller-observer strategy is adopted in lieu of raw numerical differentiation; this leads to lower energy consumption at the actuators and increases their lifetime  相似文献   

10.
Stable adaptive teleoperation   总被引:2,自引:0,他引:2  
A study is made of how the existence of transmission time delays affects the application of advanced robot control schemes to effective force-reflecting telerobotic systems. This application best exploits the presence of the human operator while making full use of available robot control technology and computing power. A physically motivated, passivity-based formalism is used to provide energy conservation and stability guarantees in the presence of transmission delays. The notion of wave variable is utilized to characterize time-delay systems and leads to a configuration for force-reflecting teleoperation. The effectiveness of the approach is demonstrated experimentally. Within the same framework, an adaptive tracking controller is incorporated for the control of the remote robotic system and can be used to simplify, transform, or enhance the remote dynamics perceived by the operator  相似文献   

11.
This paper addresses the problem of simultaneous depth tracking and attitude control of an underwater towed vehicle. The system proposed uses a two-stage towing arrangement that includes a long primary cable, a gravitic depressor, and a secondary cable. The towfish motion induced by wave driven disturbances in both the vertical and horizontal planes is described using an empirical model of the depressor motion and a spring-damper model of the secondary cable. A nonlinear, Lyapunov-based, adaptive output feedback control law is designed and shown to regulate pitch, yaw, and depth tracking errors to zero. The controller is designed to operate in the presence of plant parameter uncertainty. When subjected to bounded external disturbances, the tracking errors converge to a neighbourhood of the origin that can be made arbitrarily small. In the implementation proposed, a nonlinear observer is used to estimate the linear velocities used by the controller thus dispensing with the need for costly sensor suites. The results obtained with computer simulations show that the controlled system exhibits good performance about different operating conditions when subjected to sea-wave driven disturbances and in the presence of sensor noise. The system holds promise for application in oceanographic missions that require depth tracking or bottom-following combined with precise vehicle attitude control.  相似文献   

12.
针对水下目标跟踪非线性跟踪精度问题,假设目标机动模型为恒转速运动模型,贝叶斯框架下,因扩展卡尔曼滤波跟踪方法进行模型在估计点的泰勒展开,忽略一阶以上高阶项,存在模型误差,比较了扩展卡尔曼滤波、无迹卡尔曼滤波、容积卡尔曼滤波在高斯噪声干扰下滤波误差均方根,以及3种方法运行时间。仿真证明,非线性系统下状态维度为5,容积卡尔曼滤波跟踪的精度高于无迹卡尔曼滤波,无迹卡尔曼滤波高于扩展卡尔曼滤波。该研究为海上目标非线性测量系统提供仿真实例,为进一步滤波算法改进提供基础。  相似文献   

13.
A moving low atmospheric pressure is a main feature of tropical cyclones, which can induce a system of forced water waves and is an important factor that cause water level rise during a storm. A numerical model based on the nonlinear shallow water equations is applied to study the forced waves caused by an atmospheric pressure disturbance moving with a constant velocity over water surface. The effects of the moving speed, the spatial scale and the central pressure drop of the pressure disturbance are discussed. The results show that the wave pattern caused by a moving low-pressure is highly related with its moving speed. The wave pattern undergoes a great change as the moving speed approaches the wave velocity in shallow water. When the moving speed is less than the wave velocity, the distribution of water surface elevation is nearly the same as that of the pressure disturbance, and the maximum of the water surface elevation is located at the center of pressure. When the moving speed is larger than the wave velocity, a triangle shaped wave pattern is formed with a depression occurs in front of the pressure center, and the maximum of the water surface elevation lags behind the center of pressure. As the moving speed increases, the maximum of the water surface elevation firstly increases and then decreases, which reaches a peak when the moving speed is close to the wave velocity. The maximum of water surface elevation is approximately in proportion to the central pressure drop, and slightly affected by the spatial scale of pressure disturbance. Both the central pressure drop and the spatial scale of the pressure disturbance do not significantly affect the forced wave pattern. However, a clear difference can be noticed on the ratio of the maximum water surface elevation in moving pressure situation to that in static situation, when the moving speed is close to the wave velocity. A pressure disturbance with smaller spatial scale and smaller central pressure drop will give a larger ratio when the moving speed is close to the wave velocity.  相似文献   

14.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

15.
The paper treats the question of suboptimal dive plane control of autonomous underwater vehicles (AUVs) using the state-dependent Riccati equation (SDRE) technique. The SDRE method provides an effective mean of designing nonlinear control systems for minimum as well as nonminimum phase AUV models. It is assumed that the hydrodynamic parameters of the nonlinear vehicle model are imprecisely known, and in order to obtain a practical design, a hard constraint on control fin deflection is imposed. The problem of depth control is treated as a robust nonlinear output (depth) regulation problem with constant disturbance and reference exogenous signals. As such an internal model of first-order fed by the tracking error is constructed. A quadratic performance index is chosen for optimization and the algebraic Riccati equation is solved to obtain a suboptimal control law for the model with unconstrained input. For the design of model with fin angle constraints, a slack variable is introduced to transform the constrained control input problem into an unconstrained problem, and a suboptimal control law is designed for the augmented system using a modified performance index. Using the center manifold theorem, it is shown that in the closed-loop system, the system trajectories are regulated to a manifold (called output zeroing manifold) on which the depth tracking error is zero and the equilibrium state is asymptotically stable. Simulation results are presented which show that effective depth control is accomplished in spite of the uncertainties in the system parameters and control fin deflection constraints.  相似文献   

16.
This paper addresses the trajectory tracking problem for the low-speed maneuvering of fully actuated underwater vehicles. It is organized as follows. First, a brief review of previously reported control studies and plant models is presented. Second, an experimentally validated plant model for The Johns Hopkins University Remotely Operated Underwater Vehicle (JHUROV) is reviewed. Third, the stability of linear proportional-derivative (PD) control and a family of fixed and adaptive model-based controllers is examined analytically and demonstrated with numerical simulations. Finally, we report results from experimental trials comparing the performance of these controllers over a wide range of operating conditions. The experimental results corroborate the analytical predictions that the model-based controllers outperform PD control over a wide range of operating conditions. The exactly linearizing model-based controller is outperformed by its nonexactly linearizing counterpart. The adaptive controllers are shown to provide reasonable online plant parameter estimates, as well as velocity and position tracking consistent with theoretical predictions-providing good velocity tracking and, with the appropriate parameter update law, position tracking. The effects of reference trajectory, "bad" model parameters, feedback gains, adaptation gains, and thruster saturation are experimentally evaluated. To the best of our knowledge, this is the first reported comparative experimental study of this class of model-based controllers for underwater vehicles.  相似文献   

17.
Robust Nonlinear Path-Following Control of an AUV   总被引:3,自引:0,他引:3  
This paper develops a robust nonlinear controller that asymptotically drives the dynamic model of an autonomous underwater vehicle (AUV) onto a predefined path at a constant forward speed. A kinematic controller is first derived, and extended to cope with vehicle dynamics by resorting to backstepping and Lyapunov-based techniques. Robustness to vehicle parameter uncertainty is addressed by incorporating a hybrid parameter adaptation scheme. The resulting nonlinear adaptive control system is formally shown and it yields asymptotic convergence of the vehicle to the path. Simulations illustrate the performance of the derived controller .   相似文献   

18.
Abstract

On shingle beaches, changes in foreshore elevation and sediment distribution landward of the break point are produced largely by variations in the uprush and backwash of waves. However, very little is known about the forces active in this zone.

A field instrument system which senses and records some of the parameters thought to influence beach erosion and deposition in this zone has been constructed. The equipment is also suitable for the investigation of a number of other shore and nearshore processes including erosion on sandy and rocky shores, and flow processes affecting littoral biological communities.

In the swash zone two sensing heads, a dynamometer and a depth recorder, sense variations in uprush and backwash velocities, energies, discharges, and depths of flow. Both devices are electromechanical and are coupled to a recording unit on land by PVC‐insulated cable. The dynamometer (two force plates mounted back‐to‐back on a compression spring and coupled to variable resistances) has been calibrated, statically and in a flume, to obtain velocity determinations accurate to within 10 cm . sec?1 of true flow speed. Average swash zone velocities lie between 100 and 300 cm . sec?1.

A parallel‐wire resistance gauge mounted an a stilling tube records flow depths. As water level rises and falls in the tube it alters resistance in a control circuit. The land unit, amplifiers and a strip‐chart recorder, receives the output from the dynamometer and flow depth gauge. The recorder is equipped with a trip‐pen so that analysis of wave periods or other variables is possible in the field. With poles at known spacings across the shore and the trip‐pen records, velocity distributions across the swash zone can be obtained. Measurements of velocity made near the bed with the dynamometer can then be related to the local surface velocity profile.

Problems with the instrument system include inability to record velocities at several points simultaneously, and unreliable records of backwash parameters with low breakers on shingle beaches because of the small volume of flow and rapid percolation of water into the beach face.  相似文献   

19.
大深度载人潜水器低速大漂角模糊滑模航向控制研究   总被引:1,自引:0,他引:1  
马岭  崔维成 《海洋工程》2006,24(3):74-78
通过模型试验测量大深度载人潜水器低速大漂角运动时所受到的非线性水动力。基于一种新的模糊滑模控制策略,为潜水器设计了鲁棒航向控制器。在不同的漂角子区间内分别设计局部镇定的滑模控制器,然后通过Takagi-Sugeno模糊推理系统将它们光滑连接,得到模糊滑模控制。仿真计算结果充分显示了该控制策略的有效性。  相似文献   

20.
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号