首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex basin evolution was studied using various methods, including thermal constraints based on apatite fission‐track (AFT) analysis, vitrinite reflectance (VR) and biomarker isomerisation, in addition to a detailed analysis of the regional stratigraphic record and of the lithological properties. The study indicates that (1) given the substantial amount of data, the distinction and characterisation of successive stages of heating and burial in the same area are feasible, and (2) the three thermal indicators (AFT, VR and biomarkers) yield internally consistent thermal histories, which supports the validity of the underlying kinetic algorithms and their applicability to natural basins. All data pertaining to burial and thermal evolution were integrated in a basin model, which provides constraints on the thickness of eroded sections and on heat flow over geologic time. Three stages of basin evolution occurred in northern Switzerland. The Permo‐Carboniferous strike–slip basin was characterised by high geothermal gradients (80–100°C km?1) and maximum temperature up to 160°C. After the erosion of a few hundreds of metres in the Permian, the post‐orogenic, epicontinental Mesozoic basin developed in Central Europe, with subsidence triggered by several stages of rifting. Geothermal gradients in northern Switzerland during Cretaceous burial were relatively high (35–40°C km?1), and maximum temperature typically reached 75°C (top middle Jurassic) to 100°C (base Mesozoic). At least in the early Cretaceous, a stage of increased heat flow is needed to explain the observed maturity level. After erosion of 600–700 m of Cretaceous and late Jurassic strata during the Paleocene, the wedge‐shaped Molasse Foreland Basin developed. Geothermal gradients were low at this time (≤20°C km?1). Maximum temperature of Miocene burial exceeded that of Cretaceous burial in proximal parts (<35 km from the Alpine front), but was lower in more distal parts (>45 km). Thus, maximum temperature as well as maximum burial depth ever reached in Mesozoic strata occurred at different times in different regions. Since the Miocene, 750–1050 m were eroded, a process that still continues in the proximal parts of the basin. Current average geothermal gradients in the uppermost 2500 m are elevated (32–47°C km?1). They are due to a Quaternary increase of heat flow, most probably triggered by limited advective heat transport along Paleozoic faults in the crystalline basement.  相似文献   

2.
《Basin Research》2018,30(1):75-96
The Xichang Basin in southeastern Tibet provides crucial information about formation and tectonic processes affecting the eastern Tibetan Plateau. To determine when and how the uplift developed, we conducted detailed studies of structures and obtained thermochronology data from the Xichang Basin and its periphery. The Xichang Basin is characterized by gentle deformation of the strata, segmented by an E‐vergent boundary thrust fault. Two stages of deformation, strike‐slip followed by an E‐W oriented shortening resulted in oblique shortening between the southeastern Tibetan Plateau and the Sichuan Basin. New apatite fission‐track data interpreted together with (U‐Th)/He data confirm a simple burial/heating and exhumation/cooling history across the Xichang Basin and its periphery. Subsidence and burial of the Xichang Basin peaked between 80–30 Ma, followed by mountain building with a protracted cooling starting at around 40–20 Ma, with rates of ca. 2.0–8.0 °C Myr−1 (i.e. 0.1–0.3 mm year−1). Our data indicate that the Xichang Basin has experienced ca. 2.5–5 km of exhumation, much more intensive than the ca. 1–2 km of exhumation inferred for the southwestern Sichuan Basin. Restored balanced cross‐sections of post‐Late‐Triassic strata along a ca. 250 km traverse indicate ca. 10–20% east‐west shortening strain (i.e. ca. 20–30 km) at the southeastern Tibetan Plateau during Cenozoic time. Study of crustal thickening and erosion supports a tectonic shortening mechanism to account for the uplift of the Xichang Basin on the southeastern Tibetan Plateau.  相似文献   

3.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

4.
The Donbas Foldbelt (DF) is the compressionally deformed segment of a large Late Palaeozoic rift cross‐cutting the southern part of the East European Craton and is traditionally described as a classic example of an inverted intracratonic rift basin. Proposed formational models are often controversial and numerous issues are still a matter of speculation, primarily due to the lack of absolute time constraints and insufficient knowledge of the thermal evolution. We investigate the low‐temperature thermal history of the DF by means of zircon fission track and apatite fission track (AFT) thermochronology applied to Upper Carboniferous sediments. In all samples, the AFT chronometer was reset shortly after deposition in the Early Permian (~275 Ma). Samples contained kinetically variable apatites that are sensitive to different temperatures and using statistic‐based component analysis incorporating annealing characteristics of individual grains assessed by Dpar , we identified several distinct age populations, ranging from the Late Permian (~265 Ma) to the Late Cretaceous (~70 Ma). We could thus constrain the thermal history of the DF during a ~200 Myr long period following the thermal maximum. We found that earliest cooling of Permian and Permo‐Triassic age is recorded on the basin margins whereas the central parts were residing in or slowly cooling through the apatite partial annealing zone during Jurassic and most of Cretaceous times, and then finally cooled to near‐surface conditions latest around the Cretaceous/Palaeogene boundary. Our data show that Permian erosion was less significant and Mesozoic erosion more significant than generally assumed. Inversion and pop‐up of the DF occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous AFT ages in the central parts of the basin.  相似文献   

5.
The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.  相似文献   

6.
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward.  相似文献   

7.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   

8.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

9.
The late‐stage evolution of the southern central Pyrenees has been well documented but controversies remain concerning potential Neogene acceleration of exhumation rates and the influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and their southern foreland were buried below a thick succession of conglomerates during the Oligocene, when the basin was endorheic. However, both the amount of post‐orogenic fill and the timing of re‐excavation remain controversial. We address this question by revisiting extensive thermochronological datasets of the Axial Zone. We use an inverse approach that couples the thermo‐kinematic model Pecube and the Neighbourhood inversion algorithm to constrain the history of exhumation and topographic changes since 40 Ma. By comparison with independent geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr?1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km Myr?1) that remain constant until the present. Therefore, the inversion does not require a previously inferred Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges, however: the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 Ma and then to remain stable until ca. 9 Ma. We interpret the last stage of the topographic history as recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate temporally varying controls of different processes on exhumation: rapid rock uplift in an active orogen during late Eocene, whereas base‐level changes in the foreland basin control the post‐orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate changes appear to play a lesser role in the post‐orogenic topographic and erosional evolution of this mountain belt.  相似文献   

10.
Although the structure of the central Peruvian Subandean zone is well defined, the timing of thrust‐related exhumation and Cenozoic sedimentation remain poorly constrained. In this study, we report new apatite (U–Th)/He (AHe) and fission track (AFT) ages from thrust‐belt and foreland strata along three published balanced cross sections. AHe data from the northern, thick‐skinned domain (i.e. Shira Mountain, Otishi Cordillera and Ucayali Basin) show young AHe ages (ranging from 2.6 ± 0.2 to 13.1 ± 0.8 Ma) compared with AFT ages (ranging from 101 ± 5 to 133 ± 11 Ma). In the southern Camisea Basin, where deformation is mainly thin‐skinned, AHe and AFT ages have been both reset and show young cooling ages (3.7 ± 0.8 Ma and 8 ± 2 Ma respectively). Using low‐temperature thermochronology data and the latest fission track annealing and He diffusion codes, the thermal history of the study area has been reconstructed using inverse modelling. This history includes two steps of erosion: Early Cretaceous and late Neogene, but only Neogene sedimentation and exhumation varies in the different sectors of the study area. From a methodological point of view, large AHe data dispersion point to the need for refinement of AHe damage and annealing models. The influence of grain chemistry on damage annealing, multiple age components and the possibility of fission tracks as traps for He need further consideration. For the central Peruvian Subandes, AHe and AFT ages combined with balanced cross sections emphasize the dominant control of Paleozoic inheritance rather than climate on Cenozoic infilling and exhumation histories. Finally, our data provide the first field example of how thick‐skinned thrust‐related deformation and exhumation in the Subandes can be directly dated through AHe thermochronology.  相似文献   

11.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

12.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

13.
This article presents a new numerical inversion method to estimate progradation rates in ancient shallow‐marine clinoform sets, which is then used to refine the tectono‐stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super‐giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200‐m thick, coarse‐grained clastic wedge, that was deposited in ca. 6 Myr by a fully marine, westward‐prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60‐m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near‐horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent‐dated surfaces and a distinctive foreset‐to‐bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well‐based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr?1) and net sediment flux (from 6–14 to ≤1 km2 Myr?1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr?1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.  相似文献   

14.
The Upper Devonian Rhinestreet black shale of the western New York state region of the Appalachian Basin has experienced multiple episodes of overpressure generation manifested by at least two sets of natural hydraulic fractures. These overpressure events were thermal in origin and induced by the generation of hydrocarbons during the Alleghanian orogeny close to or at the Rhinestreet's ~3.1 km maximum burial depth. Analysis of differential gravitational compaction strain of the organic‐rich shale around embedded carbonate concretions that formed within a metre or so of the seafloor indicates that the Rhinestreet shale was compacted ~58%. Compaction strain was recalculated to a palaeoporosity of 37.8%, in excess of that expected for burial >3 km. The palaeoporosity of the Rhinestreet shale suggests that porosity reduction caused by normal gravitational compaction of the low‐permeability carbonaceous sediment was arrested at some depth shy of its maximum burial depth by pore pressure in excess of hydrostatic. The depth at which the Rhinestreet shale became overpressured, the palaeo‐fluid retention depth, was estimated by use of published normal compaction curves and empirical porosity‐depth algorithms to fall between 850 and 1380 m. Early and relatively shallow overpressuring of the Rhinestreet shale likely originated by disequilibrium compaction induced by a marked increase in sedimentation rate in the latter half of the Famennian stage (Late Devonian) as the Catskill Delta Complex prograded westward across the Appalachian Basin in response to Acadian tectonics. The regional Upper Devonian stratigraphy of western New York state indicates that the onset of overpressure occurred at a depth of ~1100 m, well in advance of the Rhinestreet shale's entry into the oil window during the Alleghanian orogeny.  相似文献   

15.
The Cooper–Eromanga Basins of South Australia and Queensland are not at their maximum burial depth due to Late Cretaceous–Tertiary, and Late Triassic–Early Jurassic exhumation. Apparent exhumation (maximum burial depth–present burial depth) for the Cooper Basin has been quantified using the compaction methodology. The results show that exhumation of the Cooper Basin for the majority of the wells is greater than the exhumation of the Eromanga Basin. Using the compaction methodology, apparent exhumation of Early to Middle Triassic age Arrabury and Tinchoo Formatios has been quantified. Both units yield similar results and do not support that the Arrabury/Tinchoo boundary represents the Cooper–Eromanga boundary. Hence, the Cooper Basin is believed to have reached its maximum burial depth in Late Triassic times. Sonic log data are not available for the units overlying the Late Cretaceous Winton Formation; thus, it is not possible to date exhumation beyond the Late Cretaceous–Tertiary using the compaction methodology. Tertiary sequences as are preserved are relatively thin and separated by marked unconformities and weathered surfaces; hence, exhumation rather than sedimentation dominated the Tertiary, and in exhumed areas, maximum burial depth was attained in Late Cretaceous times. The burial/exhumation history of representative wells was synthesized using sediment decompaction and establishing porosity/depth relations for the Cooper–Eromanga units. Considering the relative significance of the major periods of exhumation in the Cooper/Eromanga Basins, three broad types of burial/exhumation histories can be distinguished. Maximum burial depth of the Cooper Basin sequence was attained before the deposition of the Eromanga Basin sequence, i.e. Late Triassic–Early Jurassic times; maximum burial depth of the Cooper and Eromanga Basin sequences attained in Late Cretaceous times; and Cooper and Eromanga Basin sequences are currently at maximum burial‐depth. Incorporation of exhumation into burial history has major implications for hydrocarbon exploration.  相似文献   

16.
The Neuquén Group is an Upper Cretaceous continental sedimentary unit exhumed during the latest Miocene contractional phase occurred in the southern Central Andes, allowing a direct field observation and study of the depositional geometries. The identification of growth strata on these units surrounding the structures of the frontal parts of the Andes, sedimentological analyses and U–Pb dating of detrital components, allowed the definition of a synorogenic unit that coexisted with the uplift of the early Andean orogen since ca. 100 Ma, maximum age obtained in this work, compatible with previous assignments and constrained in the top by the deposition of the Malargüe Group, in the Maastrichtian (ca. 72 Ma). The definition of a wedge top area in this foreland basin system, where growth strata were described, permitted to identify a Late Cretaceous orogenic front and foredeep area, whose location and amplitude contrast with previous hypotheses. This wedge top area was mostly fed from the paleo‐Andes with small populations coming from sources in the cratonic area that are interpreted as a recycling in Jurassic and Lower Cretaceous sections, which contrasts with other analyses performed at the foredeep zone that have mixed sources. In particular, Permian sources are interpreted as coming directly from the cores of the basement structures, where Neopaleozoic sections are exposed, next to the synorogenic sedimentation, implying a strong incision in Late Cretaceous times with an exhumation structural level similar to the present. The maximum recognised advance for this Late Cretaceous deformation in the study area is approximately 500 km east of the Pacific trench, which constitutes an anomaly compared with neighbour segments where Late Cretaceous deformations were found considerably retracted. The geodynamic context of the sedimentation of this unit is interpreted as produced under the westward fast moving of South America, colliding with two consecutive mid‐ocean ridges during a period of important plate reorganisation. The subduction of young, anhydrous, buoyant lithosphere would have produced changes in the subduction geometry, reflected first by an arc waning/gap and subsequently by an arc migration that coexisted with synorogenic sedimentation. These magmatic and deformational processes would be the product of a shallow subduction regime, following previous proposals, which occurred in Late Cretaceous times, synchronous to the sedimentation of the Neuquén Group.  相似文献   

17.
The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr?1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ~2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.  相似文献   

18.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

19.
Reconstructions of grain-size trends in alluvial deposits can be used to understand the dominant controls on stratal architecture in a foreland basin. Different initial values of sediment supply, tectonic subsidence and base-level rise are investigated to constrain their influence on stratal geometry using the observed grain-size trends as a proxy of the goodness of fit of the numerical results to the observed data. Detailed measurements of grain-size trends, palaeocurrent indicators, facies and thickness trends, channel geometries and palynological analyses were compiled for the middle Campanian Castlegate Sandstone of the Book Cliffs and its conglomerate units in the Gunnison and Wasatch plateaus of central Utah. They define the initial conditions for a numerical study of the interactions between large-scale foreland basin and small-scale sediment transport processes. From previous studies, the proximal foreland deposits are interpreted as recording a middle Campanian thrusting event along the Sevier orogenic belt, while the stratal architecture in the Book Cliffs region is interpreted to be controlled by eustatic fluctuation with local tectonic influence. Model results of stratal geometry, using a subsidence curve with a maximum rate of ≈45 m Myr?1 for the northern Wasatch Plateau region predict the observed grain-size trends through the northern Book Cliffs. A subsidence curve with a maximum rate of ≈30 m Myr?1 in the Gunnison–Wasatch Plateaus best reproduces the observed grain-size trends in the southern transect through the southern Wasatch Plateau. Eustasy is commonly cited as controlling Castlegate deposition east of the Book Cliffs region. A eustatic rise of 45 m Myr?1 produces grain-size patterns that are similar to the observed, but a rate of eustatic rise based on Haq et al. (1988) will not produce the observed stratal architecture or grain-size trends. Tectonic subsidence alone, or a combined rate of tectonic subsidence and a Haq et al. (1988) eustatic rise, can explain the stratal and grain-size variations in the proximal and downstream regions.  相似文献   

20.
The Paradox Basin is a large (190 km × 265 km) asymmetric basin that developed along the southwestern flank of the basement‐involved Uncompahgre uplift in Utah and Colorado, USA during the Pennsylvanian–Permian Ancestral Rocky Mountain (ARM) orogenic event. Previously interpreted as a pull‐apart basin, the Paradox Basin more closely resembles intraforeland flexural basins such as those that developed between the basement‐cored uplifts of the Late Cretaceous–Eocene Laramide orogeny in the western interior USA. The shape, subsidence history, facies architecture, and structural relationships of the Uncompahgre–Paradox system are exemplary of typical ‘immobile’ foreland basin systems. Along the southwest‐vergent Uncompahgre thrust, ~5 km of coarse‐grained syntectonic Desmoinesian–Wolfcampian (mid‐Pennsylvanian to early Permian; ~310–260 Ma) sediments were shed from the Uncompahgre uplift by alluvial fans and reworked by aeolian‐modified fluvial megafan deposystems in the proximal Paradox Basin. The coeval rise of an uplift‐parallel barrier ~200 km southwest of the Uncompahgre front restricted reflux from the open ocean south and west of the basin, and promoted deposition of thick evaporite‐shale and biohermal carbonate facies in the medial and distal submarine parts of the basin, respectively. Nearshore carbonate shoal and terrestrial siliciclastic deposystems overtopped the basin during the late stages of subsidence during the Missourian through Wolfcampian (~300–260 Ma) as sediment flux outpaced the rate of generation of accommodation space. Reconstruction of an end‐Permian two‐dimensional basin profile from seismic, borehole, and outcrop data depicts the relationship of these deposystems to the differential accommodation space generated by Pennsylvanian–Permian subsidence, highlighting the similarities between the Paradox basin‐fill and that of other ancient and modern foreland basins. Flexural modeling of the restored basin profile indicates that the Paradox Basin can be described by flexural loading of a fully broken continental crust by a model Uncompahgre uplift and accompanying synorogenic sediments. Other thrust‐bounded basins of the ARM have similar basin profiles and facies architectures to those of the Paradox Basin, suggesting that many ARM basins may share a flexural geodynamic mechanism. Therefore, plate tectonic models that attempt to explain the development of ARM uplifts need to incorporate a mechanism for the widespread generation of flexural basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号