首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the construction sector is a major energy consumer and thus a significant contributor of CO_2 emissions in China,it is important to consider carbon reduction in this industry.This study analyzed six life-cycle stages and calculated the life-cycle CO_2 emissions of the construction sector in 30 Chinese provincial jurisdictions to understand the disparity among them.Results show that building materials production was the key stage for carbon reduction in the construction sector,followed by the building operation stage.External variables,e.g.,economic growth,industrial structure,urbanization,price fluctuation,and marketization,were significantly correlated with the emission intensity of the construction sector.Specifically,economic growth exhibited an inverted U-shaped relation with CO_2 emissions per capita and per area during the period examined.Secondary industry and land urbanization were negatively correlated with CO_2 emission intensity indicators from the construction sector,whereas tertiary industry and urbanization were positively correlated.Price indices and marketization had negative effects on CO_2 emission intensity.The policy implications of our findings are that cleaner technologies should be encouraged for cement providers,and green purchasing rules for the construction sector should also be established.Pricing tools(e.g.,resource taxes)could help to adjust the demand for raw materials and energy.  相似文献   

2.
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource- and labor- intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.  相似文献   

3.
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.  相似文献   

4.
The impact of human carbon emissions on climate has generated widespread global concern. We selected 24 countries as research objects and analysed the changes in carbon emissions in different countries between the establishment of emission reduction actions in 1990 and 2014. Then, we selected 19 factors representing four categories(economy, population, technology and energy) to explore the key factors that led to changes in carbon dioxide(CO_2) emissions in different countries. Emission reduction actions since 1990 did not lead to marked improvements, and only five countries(Russia, Germany, the United Kingdom, Italy and France) achieved reductions in carbon emissions. The factors that influenced CO_2 emissions varied among countries. In most developing countries, reductions in CO_2 emissions were caused by reductions in poverty and inherent natural conditions. Moreover, the extent of influence of a given factor on CO_2 emissions differed among countries. The global economic crisis may cause similar fluctuations in CO_2 emissions in many countries. Adjustments to energy and industrial structures are the main reason for the reduction in carbon emissions, whereas economic growth and urbanization are the two major contributors to the growth of carbon emissions. According to historical carbon emissions data, a green energy revolution must be implemented to address global climate change and ensure the sustainable development of human societies.  相似文献   

5.
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product (GDP)/km2, and industrial amino nitrogen emissions were all significantly correlated with river water quality (P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.  相似文献   

6.
High PM2.5 concentrations and frequent air pollution episodes during late autumn and winter in Jilin Province have attracted attention in recent years. To describe the spatial and temporal variations of PM2.5 concentrations and identify the decisive influencing factors, a large amount of continuous daily PM2.5 concentration data collected from 33 monitoring stations over 2-year period from 2015 to 2016 were analyzed. Meanwhile, the relationships were investigated between PM2.5 concentrations and the land cover, socioeconomic and meteorological factors from the macroscopic perspective using multiple linear regressions (MLR) approach. PM2.5 concentrations across Jilin Province averaged 49 μg/m3, nearly 1.5 times of the Chinese annual average standard, and exhibited seasonal patterns with generally higher levels during late autumn and over the long winter than the other seasons. Jilin Province could be divided into three kinds of sub-regions according to 2-year average PM2.5 concentration of each city. Most of the spatial variation in PM2.5 levels could be explained by forest land area, cultivated land area, urban greening rate, coal consumption and soot emissions of cement manufacturing. In addition, daily PM2.5 concentrations had negative correlation with daily precipitation and positive correlation with air pressure for each city, and the spread and dilution effect of wind speed on PM2.5 was more obvious at mountainous area in Jilin Province. These results indicated that coal consumption, cement manufacturing and straw burning were the most important emission sources for the high PM2.5 levels, while afforestation and urban greening could mitigate particulate air pollution. Meanwhile, the individual meteorological factors such as precipitation, air pressure, wind speed and temperature could influence local PM2.5 concentration indirectly.  相似文献   

7.
以全球变暖和极端气候为主要特征的气候变化已成为世界各国普遍关注的重大环境问题,全球性的碳排放问题亟待解决已是非常明确的科学共识.然而城市能源消耗尤其是在街道街区尺度能源消耗空间定量化研究目前较少,不利于城市采取精准控制、优化能源结构和减少碳排放措施.本文以资源型城市荆门作为案例城市,以夜间遥感数据、POI等空间数据为基...  相似文献   

8.
居民建筑物(民用住宅建筑物)碳排放对节能减排策略制定及城市可持续发展具有重要影响。针对目前城市碳排放计算方法尺度较大且缺乏居民建筑物碳排放一致性计算的问题,本文提出一种多源数据融合的城市居民建筑物碳排放定量计算方法。该方法首先采用自上而下的策略,结合夜间灯光图像,将武汉市居民碳排放总量分配到每个地块;然后采用自下而上的策略,构建由地块规划因子、社会经济因子以及单体居民建筑物形态因子组成的居民建筑物碳排放反演模型。论文使用该方法计算了武汉市所有单体居民建筑物的电能消耗碳排放量,研究结果表明:① 居民建筑物碳排放量在空间分布上呈现由中心城区向郊区不断递减的模式,和人口分布有着密切的关系;② 居民建筑物碳排放量分布具有异质性,呈现出长尾分布的特性,其中89%的居民建筑物的碳排放量低于平均值1.28 t,而11%的居民建筑物的碳排放量高于平均值;③ 同一地块上的居民建筑物碳排放量差异相对较小,地块之内平均标准差为7.66 t,而不同地块上的居民建筑物碳排放量差异相对较大,地块之间平均标准差达到51.30 t;④ 居民建筑物的碳排放量更容易受到规划因子中的容积率影响,社会经济因子中的人口密度影响,以及居民建筑物形态类型的影响。论文研究方法及相关研究成果可以为城市居住区可持续规划等问题提供决策支持。  相似文献   

9.
合理模拟城市内部的碳排放空间分布情况,是制定清晰明确的碳减排政策的重要前提。由于以往相关研究所用数据分辨率较低,且未考虑行业差异,因此所得结果较难精细地反映碳排放空间分布特征。为解决以上不足,本文提出一种更为合理的碳排放空间分布模拟方法。首先利用时间序列法预测2019年广州市各行业碳排放量;然后结合“珞珈一号”夜间灯光及城市功能分区数据,在精细尺度下实现分行业的碳排放空间化;在此基础上进行空间自相关分析,揭示广州市碳排放空间分布规律;最后采用随机森林模型分析影响广州市分行业碳排放的社会经济驱动因素。结果表明:① 广州市碳排放量在2011年后呈缓慢增长趋势,2019年碳排放量达83.12百万吨,其主要贡献来源为交通行业;② 与常用的ODIAC(1 km)、EDGAR(10 km)碳排放产品及基于NPP-VIIRS的碳排放空间化结果(500 m)相比,结合高分辨率(130 m)夜间灯光数据以及城市功能分区实现的碳排放空间化结果可以在更精细的尺度上呈现区域内部的空间碳排放差异;③ 广州市碳排放呈显著的全局空间正相关,形成了以第二和第三产业集中区域为依托的高高聚集区;④ 广州市2019年第二产业碳排放的主要影响因素是一般公共预算收入、第二产业GDP、一般公共预算支出、固定资产投资额;第三产业碳排放的主要影响因素是社会消费品零售额、第三产业GDP、各个行政区总GDP以及人口数量。综上,本研究从城市内部行业结构差异出发,结合高分辨率的夜间灯光数据,展现区域内部的碳排放分布格局,所得结果将有利于相关部门制定精准的碳减排和产业优化升级策略。  相似文献   

10.
基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局   总被引:1,自引:0,他引:1  
晋陕蒙三省区既是能源生产基地又是碳排放主要地区。对晋陕蒙市县的碳排放估算难度较大,如何准确快捷地获取其碳排放时空动态信息,对于合理制定区域碳减排规划具有重要的应用价值。本文选取中国晋陕蒙三省作为研究对象,基于夜间灯光数据,模拟晋陕蒙地区碳排放空间分布,进而系统地刻画其碳排放空间分布特征和规律。研究结果表明:① 1997-2016年,晋陕蒙三省区夜间灯光像元总值与能源消耗碳排放量之间的相关系数较高,均通过了1%的显著性检验;② 1997-2016 年,晋陕蒙地区的CO2排放总量呈逐年增长趋势,鄂尔多斯市属于“高碳”地区;铜川市、安康市、商洛市、汉中市、阿拉善盟和阳泉市属于“低碳”地区;③ 陕西省碳排放清晰地呈现出“陕北>关中>陕南”的格局。晋陕蒙地区碳排放空间分布规律分析为该区域制定切实可行的碳减排政策提供了重要的理论依据。  相似文献   

11.
Little has been done in measurement and research of the flux of CH4 emission from paddy fields in Changchun area, Jilin Province, China before 1994. So the purpose of the study is to offer available regional data of CH4 emission flux and to discuss the factors which affect CH4 emission from paddy fields. Experimental paddy fields are chosen using TM pictures respectively in Xinlicheng (43°49′N, 125°20′E) of the Yitong River’s and in Wanchang (43°44′10″N, 125°53′11″E) of the Yinma River’s alluvial plain. The fluxes of CH4 emission from paddy fields are measured by the method of static chamber in Changchun area in 3 consecutive years. The research results show that the peak of CH4 emission from paddy fields occurs during the booting stage. The mean fluxes of CH4 emission are 7.056 mg/m(2 · h) and 0.489 mg/(m2 · h) in the paddy fields of flood and discontinuous irrigation respectively. The contrastive study holds that climate condition, the way of water management and fertilizer variation have significant influence on fluxes of CH4 emission from paddy fields. The difference of climatic conditions causes the interannual change of the flux of CH4 emission from paddy fields. In general, the flux of CH4 emission from paddy fields of flood irrigation is greater than that from paddy fields of discontinuous irrigation. To change the way of water management perhaps in an available way to reduce CH4 emission flux from paddy fields. Foundation item: Under the auspices of Jilin Commttee of Science and Technology (grant 963416 - 1), and Changchun Jingyuetan Remote Sensing Test Site of the Chinese Academy of Sciences (grant 9504). Biography: YAN Min-hua (1964 -), female, a native of Liaoning Province, master, associate professor. Her research interests include climate change, greenhouse gases and wetland climate.  相似文献   

12.
Market-based emission trading schemes (ETSs) are widely used in the developed world to reduce greenhouse gas (GHG) emissions which are perceived as the source of global climate change. China, as the largest GHG emitter in the world, is committed to introducing an ETS to reduce emissions. Here we reviewed existing ETSs and sustainable energy policies worldwide as well as China’s pilot programs. These studies were conducted in order to propose recommendations for national initiatives and strategies to be implemented in China in relation to climate change adaptation and mitigation. It has been shown that setting emission caps in the context of a national emission intensity target is difficult. However, implementing reliable systems for measurement, reporting, and verification of emissions are essential. A two-level management system (by central and provincial governments) for carbon trading is beneficial to ensure uniform standards and compliance while maintaining flexibility. Persistent political support from, and effective coordination of, policies by the government are crucial. In addition, strengthening of institutional innovation, and the establishment of a national GHG emissions information system, are of equal importance. This vital information could provide a great opportunity for China to re-define its economic growth and take global leadership in combatting climate change.  相似文献   

13.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   

14.
Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et a1. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3 uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%–40%.  相似文献   

15.
Rural energy consumption in China has increased dramatically in the last decades, and has become a significant contributor of carbon emissions. Yet there is limited data on energy consumption patterns and their evolution in forest rural areas of China. In order to bridge this gap, we report the findings of field surveys in forest villages in Weichang County as a case study of rural energy consumption in northern China. We found that the residential energy consumption per household is 3313 kgce yr-1(kilogram standard coal equivalent per year), with energy content of 9.7 × 107 kJ yr-1, including 1783 kgce yr-1 from coal, 1386 kgce yr-1 from fuel wood, 96 kgce yr-1 from electricity, and 49 kgce yr-1 from LPG. Per capita consumption is 909 kgce yr-1 and its energy content is 2.7 × 107 kJ yr-1. Due to a total energy utilization efficiency of 24.6%, all the consumed energy can only supply about 2.4 × 107 kJ yr-1 of efficient energy content. Secondly, household energy consumption is partitioned into 2614 kgce yr-1 for heating, 616 kgce yr-1 for cooking, and 117 kgce yr-1 for home appliances. Thirdly, the associated carbon emissions per household are 2556 kgC yr-1, including1022 kgC yr-1 from unutilized fuel wood(90% of the total fuel wood). The rest of emissions come from the use of electricity(212 kgC yr-1), coal(1301 kgC yr-1) and LPG(21 kgC yr-1). Fourthly, local climate, family size and household income have strong influences on rural residential energy consumption. Changes in storage and utilization practices of fuel can lead to the 10%-30% increase in the efficiency of fuel wood use, leading to reduced energy consumption by 924 kgce yr-1 per household(27.9% reduction) and 901 kgC yr-1 of carbon emissions(35.3% reduction).  相似文献   

16.
This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.  相似文献   

17.
Global warming is recently an urgent issue worldwide. The increase of carbon emissions induced by human economic activi- ties has become a major driving force behind global climate change. Thus, as a matter of social responsibility, reasonable carbon con- straints should be implemented to ensure environmental security and sustainable development for every country. Based on a summary of studies that examined the relationship between carbon emissions and regional development, this paper shows that human activity-led carbon emission is caused by the combination of several influencing factors, including population size, income level, and technical pro- gress. Thus, a quantitative model derived from IPAT-ImPACT-Kaya series and STIRPAT models was established. Empirical analysis using multivariate nonlinear regression demonstrated that the origins of growing global carbon emission included the increasing influ- encing elasticity of the population size and the declining negative effect of technical progress. Meanwhile, in context of classification of country groups at different income levels, according to the comparison of fluctuating patterns of the influencing elasticity, technical progress was found as the main factor influencing carbon emission levels in high-income countries, and population size might he the controlling factor in middle-income countries. However, for low-income countries, the nonlinear relationship between carbon emission and its influencing factors was not significant, whereas population growth was identified as an important potential driving force in future carbon emissions. This study can therefore provide a reference for the formulation of policies on carbon constraints, especially to de- velop more efficient carbon mitigating policies for countries at different income levels.  相似文献   

18.
为落实绿色奥运的承诺,北京市与京津冀周边地区,以及内蒙古自治区、山西、山东等省(区),通力合作,城乡一体,调整产业结构及布局。推行资源节约、节能减排,优化环境,加强了保障能源、水源的基础设施;采取防尘、防沙、净化大气质量的工程措施。生态修复,成效显著。  相似文献   

19.
Improving comprehensive agricultural productivity is an important measure to realize agricultural modernization.Based on the data from Jilin Statistical Yearbook,this study analyzed the spatial and temporal characteristics of comprehensive agricultural productivity discrepancy in the main agricultural production areas of Jilin Province,China.The comprehensive agricultural productivity of 25 county-level administrative units were evaluated by a comprehensive index system based on five aspects which included 20 indicators from 2004 to 2017.The pattern of the discrepancy was analyzed by the spatial differentiation indices and spatial convergence theory.The results were as follows:1) the overall comprehensive agricultural productivity was in a 'W-type' rising trend;2) the discrepancy was in'inverted W-type' trend;3) the spatial distribution characteristics were mainly discrete plaque and 'inverted V-type';4) the formation of differences was forced by a combination of internal and external driving forces.Our study demonstrates the effectiveness of rising agricultural productivity and the level of economic and social developments in different counties in Jilin Province.  相似文献   

20.
城乡一体化作为新的经济增长动能,是建设高效的能源经济体系、平衡经济社会发展与生态环境保护的关键性途径。因此城乡一体化对能源效率的效应分析成为促进经济社会可持续发展的重要课题。本文以长江经济带各省市为研究对象,采用DEA测度了考虑非期望产出的能源效率值,并分析其时空上的分异特征,通过构建经济、社会和基础设施3个维度的综合指标体系评价城乡一体化水平,以此为基础运用Moran's I指数确定了能源效率、城乡一体化水平及其他影响因素的空间相关性,最后运用混合地理加权回归估计城乡一体化及3个控制变量的回归参数值并作空间效应分析。得出结论:① 从空间相关性分析来看,长江经济带的城乡一体化发展水平对能源效率具有正向作用,同时经济发展水平和产业结构也对能源效率有正向影响,而技术进步则在一定条件下与能源效率呈负相关关系;② 从回归系数的估计值来看,城乡一体化对能源效率的影响程度要小于技术进步和产业结构,而经济发展水平对能源效率的影响程度最小;③ 城乡一体化水平对能源效率的正向影响程度随着能源效率的上升呈现出先上升后下降的趋势,并且其影响在空间分布上自东向西呈现出递增的特征;④ 长江经济带的能源效率呈现显著的空间相关性和空间异质性。基于此,对长江经济带推进城乡一体化进程中的能源效率提升具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号