首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
探讨了人工合成的高价锰氧化物与紫外光(UV)联用时降解苯酚废水的特性。结果表明,氧化锰矿物在无UV时对苯酚的降解能力差异大,1 g/L的氧化锰4 h对200 mg/L苯酚废水的降解率和COD去除率分别为:锰钾矿97.51%、酸性水钠锰矿89.07%、碱性水钠锰矿11.36%、钙锰矿9.67%;锰钾矿87.79%、酸性水钠锰矿53.11%、碱性水钠锰矿6.42%、钙锰矿1.43%。UV光照下,氧化锰矿物对苯酚的降解率有不同程度的提高,且表现出显著的表面光催化性质,增加了苯酚的深度降解,COD去除率显著提高。UV下氧化锰4 h对苯酚的降解率分别为:锰钾矿99.48%、酸性水钠锰矿91.86%、碱性水钠锰矿40.15%、钙锰矿35.95%);COD的去除率分别为:锰钾矿98.11%、酸性水钠锰矿68.45%、钙锰矿27.57%、碱性水钠锰矿24.27%。MnO2-UV联用时降解苯酚可能包括两种主要作用机制:氧化锰矿物的直接化学氧化降解和UV下MnO2的表面光催化降解。  相似文献   

2.
锰氧化物和氢氧化物中的孔道结构矿物及其环境属性   总被引:6,自引:0,他引:6  
运用晶体化学理论,通过矿物孔道结构的基本概念,描述软锰矿、拉锰矿、恩苏塔锰矿、锰钡矿、锰钾矿、锰铅矿、水锰矿、斜方水锰矿、钡硬锰矿和钙锰矿等矿物的孔道结构特征。总结出孔道结构锰氧化物和氢氧化物矿物在环境修复和治理中的吸附效应、孔道效应、催化效应、氧化还原效应以及纳米效应,并展望孔道结构锰氧化物和氢氧化物矿物在环境属性开发领域的应用前景。  相似文献   

3.
不同氧化锰矿物对光催化降解苯酚的影响   总被引:1,自引:0,他引:1  
合成层状结构的酸性和碱性水钠锰矿以及隧道结构的锰钾矿和钙锰矿,将其用于苯酚的光催化降解研究。分别采用X射线衍射(XRD)、原子吸收光谱(AAS)、扫描电镜(SEM)、BET氮气吸附法和紫外可见漫反射光谱(UV-Vis DRS)对供试锰氧化物的晶体结构、化学组成、微观形貌、比表面积以及光吸收性能等进行了表征。研究表明,暗反应条件锰氧化物对苯酚的降解作用较弱,而UV-Vis光照能显著促进锰氧化物对苯酚的降解。光照反应12 h后,锰钾矿、酸性水钠锰矿、钙锰矿以及碱性水钠锰矿的苯酚降解率分别为92.1%、77.3%、57.4%和45.8%;对应的TOC去除率分别由暗反应时的6.3%、11.2%、2.0%和4.6%提高至62.1%、43.1%、25.4%和22.5%。4种供试锰氧化物均具有光催化活性,其大小顺序为:锰钾矿>酸性水钠锰矿>钙锰矿>碱性水钠锰矿。UV-Vis光照下氧化锰矿物光化学降解苯酚主要存在3种降解机制———苯酚的直接光解,锰氧化物的化学氧化和锰氧化物的光化学催化,其中光催化降解起主导作用。  相似文献   

4.
鲁安怀  李艳  黎晏彰  丁竑瑞  王长秋 《地质论评》2022,68(5):2022102007-2022102007
地球早期生命起源的第一步是合成简单的有机化合物,但合成有机物所需能量来源问题长期困扰着学术界。早期地球上丰富的硫化物半导体矿物可将太阳光子转化为光电子,提供持续的能量来源。也正是由于矿物光电子能量较高,在非生物途径合成小分子有机物方面具有优势。其中半导体矿物自然硫转化太阳能产生的光电子能量,是目前所发现的最高的矿物光电子能量,不仅能直接还原CO2分子为甲酸物质,还可催化其他生命基础物质的合成。在全球陆地系统中暴露在阳光下的岩石/土壤表面普遍被一层铁锰氧化物“矿物膜”所覆盖,光照下含半导体矿物水钠锰矿的“矿物膜”产生原位、灵敏、长效的光电流,显示出优异的光电效应。生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的结构中间体,地球早期“矿物膜”中水钠锰矿可能促进了锰簇Mn4CaO5与生物光合作用的起源与进化。早期地球半导体矿物为生命起源基本物质的合成提供直接能量来源,矿物光电子能量在地球早期生命起源与进化中起到了重要作用。  相似文献   

5.
为了模拟浅海环境下锰氧化物微生物还原作用诱导碳酸盐沉淀的过程,选取最常见的锰氧化物-水钠锰矿(K_(0.33)Mn_7O_(14)·7H_2O)为研究对象,在不同种类与浓度盐离子(Mg~(2+)、SO_4~(2-))存在条件下开展异化锰还原菌Dietzia cercidiphylli 45-1b好氧还原水钠锰矿的实验研究.通过测试体系蛋白、Mn~(2+)等离子浓度变化,利用X射线衍射(XRD)和X射线吸收谱(XAS)表征反应前后矿物结构变化,来探讨不同初始Mg~(2+)和SO_4~(2-)浓度对于菌株45-1b还原水钠锰矿及诱导碳酸盐矿物沉淀的影响.结果显示体系pH值在4天内从7.0迅速上升至9.3,Mn~(2+)浓度在2天内迅速上升至166μmol/L,随后迅速下降至8μmol/L(第4天),其好氧还原产物为菱锰矿(MnCO3),且其产生量随Mg~(2+)浓度的升高而降低,随SO_4~(2-)浓度的升高而升高.上述实验结果表明好氧环境下菌株45-1b能够利用乙酸为电子供体,水钠锰矿为电子受体还原水钠锰矿释放Mn~(2+),最终转化有机碳为无机碳酸盐矿物菱锰矿.Mg~(2+)通过影响微生物生长和菱锰矿成核对水钠锰矿的还原及菱锰矿沉淀产生抑制作用,而SO_4~(2-)可以缓解Mg~(2+)的抑制作用并促进水钠锰矿的还原及菱锰矿沉淀.  相似文献   

6.
地球早期生命起源的第一步是合成简单的有机化合物,但合成有机物所需能量来源问题长期困扰着学术界。早期地球上丰富的硫化物半导体矿物可将太阳光子转化为光电子,提供持续的能量来源。也正是由于矿物光电子能量较高,在非生物途径合成小分子有机物方面具有优势。其中半导体矿物自然硫转化太阳能产生的光电子能量,是目前所发现的最高的矿物光电子能量,不仅能直接还原CO2分子为甲酸物质,还可催化其他生命基础物质的合成。在全球陆地系统中暴露在阳光下的岩石/土壤表面普遍被一层铁锰氧化物“矿物膜”所覆盖,光照下含半导体矿物水钠锰矿的“矿物膜”产生原位、灵敏、长效的光电流,显示出优异的光电效应。生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的结构中间体,地球早期“矿物膜”中水钠锰矿可能促进了锰簇Mn4CaO5与生物光合作用的起源与进化。早期地球半导体矿物为生命起源基本物质的合成提供直接能量来源,矿物光电子能量在地球早期生命起源与进化中起到了重要作用。  相似文献   

7.
湖北古城锰矿的沉淀形式及其古环境意义   总被引:4,自引:0,他引:4  
古城锰矿是扬子地台北缘典型的“大塘坡”式锰矿,赋存于南华系大塘坡组含锰黑色岩系中,含锰矿物主要为菱锰矿.古城锰矿稀土总量高、类似现代海底铁锰结核的“帽式”稀土元素配分模式和Ce的正异常等地球化学指标指示古城锰矿Mn是以锰氧化物或氢氧化物形式沉淀,锰碳酸盐是后期转化而成.Fe/Mn比值低,较低的V、U含量和中等程度的Mo富集以及氧化还原敏感元素对Th/U、V/Cr、V/(V+Ni)比值等地球化学指标指示古城锰矿沉积环境为一种氧化一次氧化的状态,与锰是以锰氧化物或氢氧化物形式沉淀的结论一致.综合认为,古城锰矿成矿机制包括沉淀和转化两个过程,在氧化还原分层的海洋系统中,Mn在上部氧化性的水体中以氧化物或氢氧化物形式沉淀,之后下沉被掩埋在缺氧带之下,在成岩过程中和有机物质相互作用,锰氧化物或氢氧化物被还原释放出的Mn2+和有机碳被氧化释放出的CO32-结合形成锰碳酸盐,其转化可以方程2MnO2+CH2O+HCO3-=2MnCO3+H2O+OH-简单表示.  相似文献   

8.
天然锰氧化物矿物主要包括软锰矿、锰钾矿、锰钡矿、硬锰矿、恩苏塔矿、钠水锰矿、水锰矿、褐锰矿、黑锰矿等.  相似文献   

9.
伴随环境污染问题日益加剧,光能的光电转化在催化及环境领域引起广泛关注。水钠锰矿是地表常见锰矿物之一,本文借助电化学电量控制法快速高效制备了纳米水钠锰矿电极。X射线衍射(XRD)、Raman光谱测试表明物相单一为水钠锰矿;原子力显微镜(AFM)观察电极微观形貌可见表面分布有不规则多边形格子状空隙,测定沉积电量为0.5、1.0、1.5 C水钠锰矿厚度分别约为30、200、450 nm。紫外可见漫反射吸收谱显示电极可显著吸收300~600 nm波长可见光,Tauc方程计算电极间接带隙约0.8~1.3 eV,直接带隙约2.0~2.3 eV,Mott-Schottky曲线计算平带电位约1.15 V,三电极载流子浓度分别为3.26×10~(19)、4.63×10~(19)、2.70×1020 cm~(-3)。光电流密度-时间曲线及线性扫描伏安曲线表明电极有良好光电化学响应活性Evs.SCE=1.0 V(饱和甘汞电极)恒电势光照条件下,150 min后0.5、1.0、1.5 C水钠锰矿电极对5 mg/L甲基橙降解率分别为66.3%,70.0%,67.5%,拟合反应速率常数k分别为0.44 h~(-1)、0.48 h~(-1)、0.46 h~(-1)(R20.996)。综上,本文研究表明纳米水钠锰矿电极能有效可见光光电催化降解甲基橙等有机污染物。  相似文献   

10.
水钠锰矿氧化硫化物的过程与动力学研究   总被引:1,自引:0,他引:1  
水钠锰矿是表生环境中常见的氧化锰矿物之一,影响土壤溶液中硫化物的迁移、转化和归趋。本文考察了酸性水钠锰矿氧化硫化钠溶液的反应过程,采用分光光度法、离子色谱法分析S2-及其氧化产物的浓度和变化趋势,用XRD、SEM表征酸性水钠锰矿粉末反应前后的晶体结构和微观形貌,探讨了温度、pH值、矿物用量对S2-氧化速率的影响。结果表明,S2-的氧化产物主要为单质S,其氧化速率符合准一级动力学规律,且氧化速率随着温度升高、pH值降低和矿物用量增加而增大;酸性水钠锰矿首先被还原生成Mn(OH)2,Mn(OH)2在空气中与O2作用转化成Mn3O4,Mn3O4可进一步转化生成MnOOH。  相似文献   

11.
湘潭锰矿床的锰矿层赋存于新元古代南华系(成冰系)大塘坡组底部含锰黑色页岩中,含锰矿物主要为菱锰矿。湘潭锰矿的Fe/Mn值低,Th/U、V/(V+Ni)和V/Cr值等地球化学指标显示其发育在氧化-次氧化的沉积环境中,暗示菱锰矿并不是由Mn~(2+)和CO_3~(2-)直接沉淀形成的。湘潭锰矿稀土元素含量高,稀土元素配分模式存在轻微的中稀土元素富集,具有明显的Ce正异常,这些特征指示湘潭锰矿含锰矿物是以锰氧化物或氢氧化物的形式沉淀的。同时,锰矿的碳同位素富集碳的轻同位素,说明有机物参与了菱锰矿的形成过程。综合分析表明,湘潭锰矿成矿过程可以分为沉淀和转化两个阶段:在氧化性的水体中,Mn以氧化物或氢氧化物的形式沉淀;在缺氧且富含有机物质的成岩环境中,Mn氧化物或氢氧化物被有机物还原而转化生成菱锰矿。这与华南地区其他几个典型的大塘坡式锰矿的成矿机制一致。  相似文献   

12.
内蒙古额仁陶勒盖银矿床锰矿物的矿物学初步研究   总被引:8,自引:0,他引:8  
额仁陶勒盖银矿床出现的锰矿物主要为软锰矿、水锰矿、六方锰矿、锰铅矿、锰钾矿、菱锰矿、铁菱锰矿及锰方解石。解主要以独立矿物和离子吸附状态的形式赋存于地表锰铅矿和锰钾矿中;而软锰矿、六方锰矿、锰铅矿、锰钾矿等锰的氧化物和锰的氢氧化物是原生锰碳酸盐矿物的氧化分解而形成的,而水锰矿可能为热液形成;菱锰矿等原生锰的碳酸盐类矿物形成于后期热液阶段。  相似文献   

13.
以二价锰盐还原KMnO4的方法合成锰矿物,运用X射线衍射(XRD)和扫描电镜(SEM)等手段对矿物的结构进行表征,探讨合成体系中锰摩尔比R(Mn2+:Mn7+)(分别为1∶1、1∶2、1∶3、1∶4)、合成温度(分别为30℃、50℃、70℃、90℃、110℃)以及阴离子类型(分别为Cl-、SO42-、NO3-)等条件对锰矿物形成的影响.研究表明:随着R从1∶1到1∶4逐渐减小,形成的锰矿物由锰钾矿向水钠锰矿转变,锰氧化度也相应的增加;阴离子类型的不同会影响反应所得矿物的种类和结晶度;随着合成温度的升高,锰矿物的结晶度增大,锰氧化度略有升高.  相似文献   

14.
新生代深海铁锰矿床的大规模成矿是地质历史上特有的现象,其形成的海底铁锰结核/结壳因富含巨量的有用金属而备受关注。水成型铁锰成矿的胶体成因模型自20世纪90年代中期提出以来已被广泛接受并采用。随着近20年来纳米地球科学的迅速发展,人们意识到纳米颗粒作为胶体的最小部分,能够以其独特的性质显著影响铁锰成矿过程。通过总结已有研究,发现铁氧化物与锰氧化物会以纳米颗粒的形式普遍共存于多种表生地质环境,还证实了水成型铁锰结核/结壳中的主要铁锰矿物(如水羟锰矿和水铁矿)都是纳米颗粒。铁氧化物纳米颗粒对二价锰[Mn(Ⅱ)]的表面催化氧化可能是水成型铁锰矿物通常在纳米尺度密切共生的原因。此外,在铁锰结壳中还观测到大量在以往研究中被普遍忽视的三价锰[Mn(Ⅲ)]矿物,其含量在结壳顶部最高,随深度增加逐渐下降,四价锰[Mn(Ⅳ)]矿物的含量则呈相反的变化趋势。不同价态锰氧化物纳米颗粒的表面能差异导致Mn(Ⅲ)矿物在Mn(Ⅱ)的氧化过程中最先沉淀,并可能在沉淀之后逐渐转化为Mn(Ⅳ)矿物。相信随着纳米地球科学与高精度原位实验技术的发展,必将不断深化对海水铁锰循环及海底铁锰成矿的认识。  相似文献   

15.
地质历史时期锰氧化物矿物的出现早于产氧光合作用起源,锰矿物的成分与种类和地球环境呈现深时共演化关系。地表最普遍的锰氧化物——层状水钠锰矿与生物产氧光合作用中心Mn4CaO5团簇在化学成分、局域结构和性质功能上具有相似性,该现象使有机和无机界中Mn驱动的光反应得以紧密结合,锰氧化物因此很可能是光合产氧中心的雏形。在阳光照射的自然环境中,锰氧化物的光化学作用可收集并转化太阳能,在光照下裂解水产生氧气,因此在地质历史时期可能发挥着类似生物光合作用的矿物产氧功能。进一步揭示含锰矿物与环境因子协变关系及锰氧化物光催化分解水产氧活性机制,可为查明生物产氧光合作用起源与能量转化机制提供矿物学证据,为探索矿物-生物共演化和人工光合作用应用提供科学与技术突破的机遇。  相似文献   

16.
几种氧化锰矿物的合成及其对重金属的吸附和氧化特性   总被引:7,自引:0,他引:7  
以改进或优化的方法合成土壤中常见的几种氧化锰矿物,对其形貌、结构、组成和表面性质进行表征,研究其对几种重金属的吸附和对Cr(Ⅲ)的氧化特性及与其结构和表面性质的关系。结果表明,合成的水钠锰矿、钙锰矿、锰钾矿和黑锰矿均为单相矿物,具有典型的形貌特征。水钠锰矿、钙锰矿和锰钾矿的PZC较低,分别为1.75、3.50和2.10,其表面可变负电荷量的大小顺序为水钠锰矿≥锰钾矿>钙锰矿;黑锰矿的PZC较高,表面可变负电荷量远低于其他3种矿物。供试矿物中,水钠锰矿对Pb2 、Cu2 、Co2 、Cd2 和Zn2 等重金属的吸附能力最强,黑锰矿的吸附能力最弱,除黑锰矿吸附更多的Cu2 外,供试氧化锰矿物对Pb2 的吸附量最大。氧化锰矿物对重金属的吸附受重金属的水解常数和矿物的表面负电荷的影响较大,它们均影响氧化锰矿物表面诱导水解作用及吸附离子形态。供试氧化锰矿物对Cr(Ⅲ)氧化能力和氧化过程中Mn2 释放量不同,受矿物结构、氧化度、表面性质以及结晶度等因素影响,氧化能力顺序为水钠锰矿>锰钾矿>钙锰矿>黑锰矿,最大氧化量分别为1330.0、422.6、59.7和36.6mmol/kg。  相似文献   

17.
新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因   总被引:2,自引:1,他引:1  
近年来,西昆仑玛尔坎苏地区富锰矿找矿取得重大突破,新发现奥尔托喀纳什等大型锰矿床。该矿床层位稳定,厚度较大,Mn平均品位达35%以上,为中国最富的碳酸锰矿床,属于典型的海相沉积型锰矿床。锰矿体主要赋存于晚石炭世喀拉阿特河组地层中,该组岩性为一套浅海碳酸盐岩台地相沉积建造组合,可划分为台内浅滩、潮坪、开阔台地、局限台地等4个相类型。成矿分为三个期次,第一期为沉积成岩成矿期,矿石矿物由菱锰矿、锰方解石、硼锰矿组成;第二期为热液改造期,形成锰镁绿泥石、红锰矿、硫锰矿、锰方解石(脉)、重结晶菱锰矿、蔷薇辉石及滑石、石膏等;第三期为表生氧化期,发育少量软锰矿、水锰矿、硬锰矿等。锰矿石具有较低的Fe/Mn比值、V/(V+Ni)比值和强烈的Ce正异常,表明Mn是在氧化环境下,以氧化物或氢氧化物的形式沉积富集。含锰岩系顶、底板岩石中含较多成熟度较差的中酸性火山岩岩屑,以及具有较低Al/(Al+Fe+Mn)、Y/Ho、Co/Ni比值的锰矿石,说明其成矿物质来源于海底热水活动。奥尔托喀纳什锰矿具有"内源外生"的特点,锰矿石及菱锰矿具有负的δ~(13)C值(-23.3‰~-13.2‰),表明锰矿经历了先成锰氧化物或氢氧化物、再被还原转化成菱锰矿的过程。此外,有机质所导致的更为强烈的还原作用是本矿床富锰矿形成的重要机制。后期构造叠加致使矿体发生变形,矿体形态受褶皱控制。矿石受到强烈改造,形成锰镁绿泥石、红锰矿、蔷薇辉石等,晚期经历氧化淋滤作用形成软锰矿、水锰矿等。  相似文献   

18.
本文对日本天然产出的十七种锰的二氧化物矿物.锰钾矿(隐钾锰矿)(石金石—ishiganeite),锰钡矿(钡硬锰矿),锰钠矿(隐钠锰矿),锰铅矿(铅硬锰矿),软锰矿,恩苏塔矿(横须贺石),拉锰矿,(兰姆斯德矿),钠水锰矿(比艾山矿),钙硬锰矿,低钙锰矿(塔锰矿,高根矿),钙锰矿(钡镁锰矿),锂硬锰矿,硬锰矿,黑锌锰矿,水锌锰矿,黑银锰矿和非晶质锰的二氧化物矿物,从描述矿物学的观点出发,结合陆地产出的锰的二氧化物与锰结核的成分之间的关系。进行了简要的论述。  相似文献   

19.
本文在对普通培养条件下异养微生物粪产碱杆菌(Alcaligenes faecalis,A.faecalis)反硝化特征研究的基础上,运用电化学方法于一定电势下(-0.15 V、-0.06 V、+0.06 V vs.NHE)模拟半导体矿物导带光电子能量,探讨不同能量的光电子对A.faecalis反硝化特性及细胞生长代谢的影响。实验显示,在普通培养条件下,A.faecalis在有氧和无氧环境中均不能还原NO-3,但还原NO-2效果明显。在模拟光电子实验体系中,A.faecalis可在不同电势(-0.15 V、-0.06 V、+0.06 V)的阴极石墨电极表面附着并形成具有反硝化活性的菌膜;其中,外加电势为-0.15V的实验组菌膜量最多,其NO-3去除率也最高,10天达到52%;-0.06 V体系略低,NO-3去除率为30.5%,+0.06 V体系菌膜量最少,其NO-3去除效果也最差,仅为10.6%。而在不添加微生物的电化学体系中,3个外加电势下的NO-3浓度均未发生明显变化。本实验研究结果证明了一定能量的半导体矿物光电子可影响土壤异养微生物A.faecalis的生长代谢及反硝化行为。  相似文献   

20.
<正>锰矿是我国的重要矿种,主要有锰氧化物和锰碳酸盐两种类型的矿石,矿集区的形成通常经历了锰元素富集-锰氧化物富集和锰碳酸盐(菱锰矿)富集这三个阶段。(Du et al.,2013)。而表生红土型风化壳和次生锰矿中常含有丰富的表生钾锰矿物,包括隐钾锰矿、锰钡矿、硬锰矿、锰铅矿和钙锰矿等,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号