共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermochemical properties of the six reactions: (1) N2+hν (solar EUV) → N+ + N(4S) + e−, (2) N+ + H2 → NH+ + H, (3) NH+ + H2 → NH+2 + H, (4) NH+2 + H2 → NH+3 + H, (5) NH+3 + H2 → NH+4 + H, and (6) NH+4 + e− → NH3 + H, were theoretically proposed by Atreya in 1986 and were cited in 2003 by Bernard who assumed that this chain reaction would lead to ammonia formation in Titan's atmosphere. The thermochemical properties of these six reactions have been calculated by means of the coupled cluster singles and doubles (CCSD) at the CCSD/cc-pvdz level, and the CCSD/6-311++g(3df,3pd) level, and G2 method. The geometries of the reactants and products of reactions have been optimized, the energies of reactions have been computed. The analysis of the results shows that: (I) The free energies of four reactions among these six reactions are negative. It means that these reactions, namely reactions (1)-(6) except reaction (2), can react spontaneously in Titan's low temperature environment. The converted temperatures of reactions (3) and (5) are 11881.7 and 4596.9 K, respectively. (II) Reaction (2) is an endothermic reaction, its converted temperature is 1797.6 K. When T<1797.6 K, reaction (2) cannot react forward spontaneously. The barrier of reaction (2) is 26.154 kcal mol−1, which is probably too high to allow it to occur in the atmosphere of Titan. The rate for this reaction at 300 K has been calculated, and the value is k=4.16×10−7 s−1. (III) The results of the three methods are more or less the same. So it is concluded that this chain reaction cannot be a pathway to lead to ammonia (gas phase) formation in Titan's atmosphere. 相似文献
2.
We have developed a new photochemical model of Titan's atmosphere which includes all the important compounds and reactions in spherical geometry from the surface to 1240 km. Compared to the previous model of Yung et al. (1984, Astrophys. J. Suppl. 55, 465-506), the most significant recent change in the reactions used is the updated methane photodissociation scheme (Mordaunt et al. 1993, J. Chem. Phys. 98(3), 2054-2065). Moreover, the transfer of the solar radiation in the atmosphere and the photolysis rates have been calculated by using a Monte Carlo code. Finally, the eddy diffusion coefficient profile is adjusted in order to fit the mean vertical distribution of HCN retrieved from millimeter groundbased observations of Tanguy et al. (1990, Icarus, 85, 43-57) using new values for the boundary flux of atomic nitrogen (Strobel et al. 1992, Icarus 100, 512-526). We have run the model in both steady-state and diurnal modes, with 62 speices involved in 249 reactions. There is little difference between diurnal and steady-state results. Overall our results are in a closer agreement with the abundances inferred from the Voyager infrared measurements at the equator than the Yung et al. results. We find that the catalytic scheme for H recombination invoked by Yung et al. only slightly improves the model results and we conclude that this scheme is not essential to fit observations. 相似文献
3.
A wide range of experiments has already been carried out to simulate the chemical evolution of Titan. Such experiments can provide useful information on the possible nature of minor constituents, mostly organic, likely to be present in Titan's atmosphere. Indeed, all but one of the organic compounds already detected in Titan's atmosphere have been identified in simulation experiments. The exception, C4N2, as well as other compounds expected in Titan from theoretical modeling, such as other N-organics, mainly CH2N2, and polyynes, namely C6H2, have never been detected in experimental simulation. It turned out that these compounds were thermally unstable, and the temperature conditions used during the simulation experiments (including conditions used for chemical analysis) were not appropriate. We have recently started a new program of simulation experiments using temperature conditions close to those of Titan's environment, more compatible with the build-up and detection of organics only stable at low temperature. Spark discharge of N2-CH4 gas mixtures was carried out at low temperature in the range of 100-150 K. The analysis of the obtained products was performed through FTIR, GC and GC-MS techniques. GC-peak identification was done owing to its mass spectrum and, in most cases, by comparison of the retention time and of the mass spectrum with standards. We report here the first detection in Titan's simulation experiments of C6H2. Its abundance is a few 10(-2) relative to C4H2. We also report a tentative identification of HC5N (to be confirmed by use of standard) with an abundance of a few 10(-2) relative to HC3N. The possible presence of HC5N suggested by our work provides the occurrence of very novel pathways in the formation of Titan's organic aerosols, involving not only C and H but also N atoms. 相似文献
4.
Titan, the main satellite of Saturn, has been observed by remote sensing for many years, both from interplanetary probes (Pioneer and Voyager's flybys) and from the Earth. Its N2 atmosphere, containing a small fraction of CH4 (approximately 2%), with T approximately 90 K and P approximately 1.5 bar at the ground level, is irradiated by solar UV photons and deeply bombarded by energetic particles, i.e. Saturn mangetospheric electrons and protons, interplanetary electrons and cosmic rays. The resulting energy deposition, which takes place mainly below 1000 km, initiates chemical reactions which yield gaseous hydrocarbons and nitriles and, through polymerisation processes, solid aerosol particles which grow by coagulation and settle down to the ground. At the present time, photochemical models strongly require the results of specific laboratory studies. Chemical rate constants are not well known at low temperatures, charged-particle-induced reactions are difficult to model and laboratory simulations of atmospheric processes are therefore of great interest. Moreover, the synthesis of organic compounds which have not been detected to date provides valuable information for future observations. The origin and chemical composition of aerosols depend on the nature of chemical and energy sources. Their production from gaseous species may be monitored in laboratory chambers and their optical or microphysical properties compared to those deduced from the observations of Titan's atmosphere. The development of simulation chambers of Titan's extreme conditions is necessary for a better understanding of past and future observations. Space probes will sound Titan's atmosphere by remote sensing and in situ analysis in the near future (Cassini-Huygens mission). It appears necessary, as a preliminary step to test on-board experiments in such chambers, and as a final step, when new space data have been acquired, to use them for more general scientific purposes. 相似文献
5.
Vladimir A. Krasnopolsky 《Icarus》2009,201(1):226-1163
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze. 相似文献
6.
We have developed a coupled general circulation model of Titan's atmosphere in which the aerosol haze is treated with a microphysical model and is advected by the winds. The radiative transfer accounts for the non uniform haze distribution and, in turn, drives the dynamics. We analyze the GCM results, especially focusing on the difference between a uniform haze layer and a haze layer coupled to the dynamics. In the coupled simulation the aerosols tend to accumulate at the poles, at latitudes higher than ±60°. During winter, aerosols strongly radiate at thermal infrared wavelengths enhancing the cooling rate near the pole. Since this tends to increase the latitudinal gradients of temperature the direct effect of this cooling excess, in contrast to the uncoupled haze case, is to increase the strength of the meridional cells as well as the strength of the zonal winds and profile. This is a positive feedback of the haze on dynamics. The coupled model reproduces observations about the state of the atmosphere better than the uniform haze model, and in addition, the northern polar hood and the detached haze are qualitatively reproduced. 相似文献
7.
In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters. 相似文献
8.
《Planetary and Space Science》2007,55(10):1470-1489
Uncertainties carried by the different kinetic parameters included in photochemical models of planetary atmospheres have rarely been considered even if they are supposed to be contributing mostly to the inconsistencies between observations and computed predictions. In this paper, we report the first detailed analysis of the propagation of uncertainties carried by the reaction rate coefficients included in an up-to-date photochemical model of Titan's atmosphere. Monte Carlo calculations performed on these reaction rate coefficients have been used to introduce their uncertainties and to investigate their significance on the photochemical modeling of Titan's atmosphere. Crude approximations in the implemented physical processes have been adopted to limit the number of free parameters. This allows us to pinpoint specifically the importance of chemical processes uncertainties in Titan's photochemical models and to evaluate their chemical robustness. First implications of this preliminary study related to purely chemical rate coefficient uncertainties are discussed. They are important enough to question indeed any comparisons between theoretical models with observations as well as any potential conclusions subsequently inferred. Since the latest missions, such as Cassini–Huygens, are likely to induce an ever-increasing interest for such kind of comparing studies, our conclusions show that it is crucial to reform the way we think of, and use, current photochemical models to understand the processes occurring in the atmospheres of the outer Solar System. 相似文献
9.
A prominent feature of Titan's atmosphere is a thick haze region that acts as the end product of hydrocarbon and nitrile chemistry. Using a one-dimensional photochemical model, an investigation into the chemical mechanisms responsible for the formation of this haze region is conducted. The model derives profiles for Titan's atmospheric constituents that are consistent with observations. Included is an updated benzene profile that matches more closely with—recent ISO observations (Icarus 161 (2003) 383), replacing the profile given in the benzene study of Wilson et al. (J. Geophys. Res. 108 (2003) 5014). Using these profiles, pathways from polyynes, aromatics, and nitriles are considered, as well as possible copolymerization among the pathways. The model demonstrates that the growth of polycyclic aromatic hydrocarbons throughout the lower stratosphere plays an important role in furnishing the main haze layer, with nitriles playing a secondary role. The peak chemical production of haze layer ranges from 140 to 300 km peaking at an altitude of 220 km, with a production rate of 3.2×10−14 gcm−2 s−1. Possible mechanisms for polymerization and copolymerization and suggestions for further kinetic study are discussed, along with the implications for the distribution of haze in Titan's atmosphere. 相似文献
10.
A. Coustenis 《Earth, Moon, and Planets》1994,67(1-3):95-100
In spite of a marked resemblance with our planet, Titan should not be hastily considered as another Earth but rather as a useful tool in the study of chemical and physical processes in the primitive Earth. 相似文献
11.
High-energy photons, electrons, and ions initiate ion-neutral chemistry in Titan's upper atmosphere by ionizing the major neutral species (nitrogen and methane). The Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft performed the first composition measurements of Titan's ionosphere. INMS revealed that Titan has the most compositionally complex ionosphere in the Solar System, with roughly 50 ions at or above the detection threshold. Modeling of the ionospheric composition constrains the density of minor neutral constituents, most of which cannot be measured with any other technique. The species identified with this approach include the most complex molecules identified so far on Titan. This confirms the long-thought idea that a very rich chemistry is actually taking place in this atmosphere. However, it appears that much of the interesting chemistry occurs in the upper atmosphere rather than at lower altitudes. The species observed by INMS are probably the first intermediates in the formation of even larger molecules. As a consequence, they affect the composition of the bulk atmosphere, the composition and optical properties of the aerosols and the flux of condensable material to the surface. In this paper, we discuss the production and loss reactions for the ions and how this affects the neutral densities. We compare our results to neutral densities measured in the stratosphere by other instruments, to production yields obtained in laboratory experiments simulating Titan's chemistry and to predictions of photochemical models. We suggest neutral formation mechanisms and highlight needs for new experimental and theoretical data. 相似文献
12.
The deposition of energy, escape of atomic and molecular nitrogen and heating of the upper atmosphere of Titan are studied using a Direct Simulation Monte Carlo method. It is found that the globally averaged flux of deflected magnetospheric atomic nitrogen ions and molecular pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. The energy deposition in this region determines the atmospheric loss and the production of the nitrogen neutral torus. The temperature structure near the exobase is also calculated. It is found that, due to the inclusion of the molecular pickup ions more energy is deposited closer to the exobase than assumed in earlier plasma ion heating calculations. Although the temperature at the exobase is only a few degrees larger than it is at depth, the density above the exobase is enhanced by the incident plasma. 相似文献
13.
A one-dimensional composition model of Titan's upper atmosphere is constructed, coupling 36 neutral species and 47 ions. Energy inputs from the Sun and from Saturn's magnetosphere and updated temperature and eddy coefficient parameters are taken into account. A rotating technique at constant latitude and varying local-time is proposed to account for the diurnal variation of solar inputs. The contributions of photodissocation, neutral chemistry, ion-neutral chemistry, and electron recombination to neutral production are presented as a function of altitude and local time. Local time-dependent mixing ratio and density profiles are presented in the context of the TA and T5 Cassini data and are compared in detail to previous models. An independent and simplified ion and neutral scheme (19-species) is also proposed for future 3D-purposes. The model results demonstrate that a complete understanding of the chemistry of Titan's upper atmosphere requires an understanding of the coupled ion and neutral chemistry. In particular, the ionospheric chemistry makes significant contributions to production rates of several important neutral species. 相似文献
14.
《Planetary and Space Science》2007,55(14):2128-2136
We propose a new approach to study the chemical complexity of Titan's atmosphere. We have developed an evolutionary algorithm-based model that simulates the evolution of interacting elements with different valences. This abstract model mimics a C–H–O–N system that might get an insight into the general properties of the chemistry of Titan's atmosphere. Comparison with detailed models like photochemical models is discussed to evaluate limitations and benefits of each approach. Comparison with observations suggests that Titan's atmosphere might self-organize to produce hydrocarbons with distributions that follow a power-law relation. If confirmed, this property makes possible some prediction about the abundance of heavy hydrocarbons in the atmosphere of Titan. 相似文献
15.
We show that photochemical models of Titan's atmosphere can give rise to bimodal distributions in the abundances of some major compounds, like C2H2 and C2H4. Sensitivity analysis enabled us to identify the causes and conditions of this bimodality. We propose several methods to control this behavior in photochemical models. In particular, we point out the importance of two key reactions and the needs for a critical evaluation of the kinetic data. We also show that the abundances of some compounds are hypersensitive to the ratio [CH4]/[H], suggesting that a time-dependent variation of this ratio might lead to a real bistability in the high atmosphere of Titan. 相似文献
16.
17.
Darrell F. Strobel 《Icarus》2009,202(2):632-641
In Strobel [Strobel, D.F., 2008. Icarus, 193, 588-594] a mass loss rate from Titan's upper atmosphere, , was calculated for a single constituent, N2 atmosphere by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating due to CH4 absorption. It was estimated, but not proven, that the hydrodynamic mass loss is essentially CH4 and H2 escape. Here the individual conservation of momentum equations for the three major components of the upper atmosphere (N2, CH4, H2) are solved in the low Mach number limit and compared with Cassini Ion Neutral Mass Spectrometer (INMS) measurements to demonstrate that light gases (CH4, H2) preferentially escape over the heavy gas (N2). The lightest gas (H2) escapes with a flux 99% of its limiting flux, whereas CH4 is restricted to ?75% of its limiting flux because there is insufficient solar power to support escape at the limiting rate. The respective calculated H2 and CH4 escape rates are 9.2×1027 and 1.7×1027 s−1, for a total of . From the calculated densities, mean free paths of N2, CH4, H2, and macroscopic length scales, an extended region above the classic exobase is inferred where frequent collisions are still occurring and thermal heat conduction can deliver power to lift the escaping gas out of the gravitational potential well. In this region rapid acceleration of CH4 outflow occurs. With the thermal structure of Titan's thermosphere inferred from INMS data by Müller-Wodarg et al. [Müller-Wodarg, I.C.F., Yelle, R.V., Cui, J., Waite Jr., J.H., 2008. J. Geophys. Res. 113, doi:10.1029/2007JE003033. E10005], in combination with calculated temperature profiles that include sputter induced plasma heating at the exobase, it is concluded that on average that the integrated, globally average, orbit-averaged, plasma heating rate during the Cassini epoch does not exceed (). 相似文献
18.
A 3-D Monte Carlo model is used to describe the ejection of N and N2 from Titan due to the interaction of Saturn's magnetospheric N+ ions and molecular pick-up ions with its N2 atmosphere. Based on estimates of the ion flux into Titan's corona, atmospheric sputtering is an important source of both atomic and molecular nitrogen for the neutral torus and plasma in Saturn's outer magnetosphere, a region now being studied by the Cassini spacecraft. 相似文献
19.
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed. 相似文献
20.
Thermal conductivity measurements, presented in this paper (Fig. 3), were made during the descent of the Huygens probe through the atmosphere of Titan below the altitude of 30 km. The measurements are broadly consistent with reference values derived from the composition, pressure and temperature profiles of the atmosphere; except in narrow altitude regions around 19 km and 11 km, where the measured thermal conductivity is lower than the reference by 1% and 2%, respectively. Only single data point exists at each of the two altitudes mentioned above; if true however, the result supports the case for existence for molecules heavier than nitrogen in these regions (such as: ethane, other primordial noble gases, carbon dioxide, and other hydrocarbon derivatives). The increasing thermal conductivity observed below 7 km altitude could be due to some liquid deposition during the descent; either due to condensation and/or due to passing through layers of fog/cloud containing liquid nitrogen-methane. Thermal conductivity measurements do not allow conclusions to be drawn about how such liquid may have entered the sensor, but an estimate of the cumulative liquid content encountered in the last 7 km is 0.6% by volume of the Titan's atmosphere sampled during descent. 相似文献