首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full numerical solution is found for the effect of a strongly magnetic star on its accretion disc, for the case of magnetic buoyancy diffusion. As in the previously considered case of turbulent diffusion, the disc becomes disrupted when magnetic and viscous stresses become comparable. A magnetically induced temperature elevation leads to electron scattering opacity and radiation pressure becoming significant far from the stellar surface, with consequent viscous instability and vertical disruption of the disc. This, together with the previous turbulent case, suggests that such a disruption mechanism owing to strongly magnetic accretors is generally operable.  相似文献   

2.
An analytic model is presented for the inner structure of an accretion disc in the presence of a strong stellar magnetic field. The model is valid inside the radius at which the electron scattering opacity starts to exceed the Kramers opacity. It illustrates how the increasing stellar poloidal field leads to an elevated disc temperature, ultimately causing a breakdown in the vertical equilibrium owing to rapidly increasing radiation pressure which cannot be balanced by the vertical stellar gravity. Viscous instability also occurs. The solution gives an accurate representation of numerical results, and enables useful expressions to be derived for the radius at which the disc is marginally thin and the radius at which viscous instability occurs. The disruption mechanism appears to have general validity for accretion discs around strongly magnetic stars.  相似文献   

3.
The radial structure of a thin accretion disc is calculated in the presence of a central dipole magnetic field aligned with the rotation axis. The problem is treated using a modified expression for the turbulent magnetic diffusion, which allows the angular momentum equation to be integrated analytically. The governing algebraic equations are solved iteratively between 1 and 104 stellar radii. An analytic approximation is provided that is valid near the disruption radius at about 100 stellar radii. At that point, which is approximately 60 per cent of the Alfvén radius and typically about 30 per cent of the corotation radius, the disc becomes viscously unstable. This instability results from the fact that both radiation pressure and opacity caused by electron scattering become important. This in turn is a consequence of the magnetic field which leads to an enhanced temperature in the inner parts. This is because the magnetic field gives rise to a strongly enhanced vertically integrated viscosity, so that the viscous torque can balance the magnetic torque.  相似文献   

4.
Equipartition magnetic fields can dramatically affect the polarization of radiation emerging from accretion disc atmospheres in active galactic nuclei. We extend our previous work on this subject by exploring the interaction between Faraday rotation and absorption opacity in local, plane-parallel atmospheres with parameters appropriate for accretion discs. Faraday rotation in pure scattering atmospheres acts to depolarize the radiation field by rotating the polarization planes of photons after last scattering. Absorption opacity in an unmagnetized atmosphere can increase or decrease the polarization compared to the pure scattering case, depending on the thermal source function gradient. Combining both Faraday rotation and absorption opacity, we find the following results. If absorption opacity is much larger than scattering opacity throughout the atmosphere, then Faraday rotation generally has only a small effect on the emerging polarization because of the small electron column density along a photon mean free path. However, if the absorption opacity is not too large and it acts alone to increase the polarization, then the effects of Faraday rotation can be enhanced over those in a pure scattering atmosphere. Finally, while Faraday rotation often depolarizes the radiation field, it can in some cases increase the polarization when the thermal source function does not rise too steeply with optical depth. We confirm the correctness of the analytic calculation by Silant'ev of the high magnetic field limit of the pure scattering atmosphere, which we incorrectly disputed in our previous paper.  相似文献   

5.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

6.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

7.
8.
An asynchronous magnetic white dwarf affects the rate of orbital evolution in AM Herculis binaries. An over-synchronous star leads to a positive orbital magnetic torque which reduces the rate of shrinkage of the secondary star's Roche lobe, and hence reduces the mass transfer rate. An opposing effect occurs as a result of the orbital angular momentum loss via secondary mass transfer in the absence of an accretion disc. The modification of the magnetic braking-driven synchronous mass transfer rate is calculated for a range of degrees of asynchronism, and its effect is compared at different orbital periods.  相似文献   

9.
We consider accreting systems in which the central object interacts, via the agency of its magnetic field, with the disc that surrounds it. The disc is turbulent and, so, has a finite effective conductivity. The field sweeps across the face of the disc, thereby forming a current that is directed radially within the disc. In turn, this disc current creates a toroidal field, where the interaction between the disc current and the toroidal field produces a Lorentz force that compresses the disc. We investigate this compression, which creates a magnetic scaleheight of the disc that can be much smaller than the conventional scaleheight. We derive an analytic expression for the magnetic scaleheight and apply it to fully ionized discs.  相似文献   

10.
The stability of turbulent accretion discs is considered, in which a magnetically influenced wind plays a major role in driving the inflow. The magnetic field is generated by a dynamo operating in the disc, involving radial shear and turbulence. The steady angular momentum balance is found to be linearly stable for a range of radial boundary conditions, and an expression is derived for the adjustment time-scale as a function of the equilibrium ratio of the magnetic and viscous disc torques.  相似文献   

11.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

12.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

13.
A model is presented for an accretion disc in which the inflow is driven purely by the angular momentum removed in a centrifugally accelerated magnetic wind. Turbulent discs around compact stars are considered, with the required magnetic field being generated in the disc by a simple dynamo. The turbulent magnetic Prandtl number, N p, measures the ratio of turbulent viscosity to turbulent magnetic diffusivity. Formally, the hypothetical limit   N p→ 0  corresponds to the magnetic wind torque dominating the viscous torque, but in practice the inflow is magnetically controlled for   N p≲ 0.1  .
The suggestion by previous authors that purely magnetic wind-driven discs may be unstable is investigated. A detailed steady solution is found which allows perturbations to the thermal balance and vertical equilibrium to be calculated, and hence the effect of perturbations to the magnetic diffusivity, η, to be assessed. For a standard parametrized form of η, the wind-driven angular momentum balance is found to be linearly unstable. An increase in the inflow rate leads to increased bending of the poloidal magnetic field and an enhanced wind mass loss rate. This increases the angular momentum loss rate which drives further inflow. There is a resultant increase in η, due to the temperature perturbation, but this does not relieve field bending sufficiently to prevent the instability.  相似文献   

14.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

15.
The presence of an imposed vertical magnetic field may drastically influence the structure of thin accretion discs. If the field is sufficiently strong, the rotation law can depart from the Keplerian one. We consider the structure of a disc for a given eddy magnetic diffusivity but neglect details of the energy transport. The magnetic field is assumed to be in balance with the internal energy of the accretion flow. The thickness of the disc as well as the turbulent magnetic Prandtl number and the viscosity, α , are the key parameters of our model. The calculations show that the radial velocity can reach the sound speed for a magnetic disc if the thickness is comparable to that of a non-magnetic one. This leads to a strong amplification of the accretion rate for a given surface density. The inclination angle of the magnetic field lines can exceed the critical value 30° (required to launch cold jets) even for a relatively small magnetic Prandtl number of order unity. The toroidal magnetic fields induced at the disc surface are smaller than predicted in previous studies.  相似文献   

16.
The problem of magnetic field generation and advection in accretion discs is considered, in the context of wind launching and angular momentum extraction. A dipole-symmetry solution of the dynamo equations is found, with force-free boundary conditions appropriate for matching to a wind solution. Consideration of the curved field geometry and diffusive nature of the disc enables the position of the sonic point to be calculated and related to the field inclination at the disc surface. A critical inclination of 20° to the horizontal results, for which the sonic point lies in the disc surface and there is no potential barrier to wind launching. Hence the wind mass-loss rate will only become excessive, leading to disc disruption, for large field bending. The compressional effect of the horizontal magnetic field enhances the wind mass flux.  相似文献   

17.
We consider the problem of poloidal magnetic field advection and bending of an initially vertical field owing to radial inflow in thin accretion discs. For a ratio of kinematic viscosity to magnetic diffusivity of order unity, significant bending of an externally applied vertical field cannot occur in a disc with no internal dynamo. However, we show that if poloidal field is generated by a dynamo operating near its critical state, then significant field bending may be possible. Our results are of particular relevance to wind launching from accretion discs.  相似文献   

18.
19.
计算了粘滞演化阶段原太阳吸积盘结构。采用稳态标准吸积盘模型来描述盘中湍动粘滞;忽略其径向能量传输,将垂直结构作为一维问题处理。假设盘作Keplerian较差旋转,处于流体力学平衡和局域热平衡,盘由粘滞耗散加热,能量通过对流和辐射向外传输。结果表明,对温度敏感的不透明度是决定盘结构的重要因素;原太阳吸积盘为冷的薄盘,盘中热对流不稳定性由外而内,由上而下地终结;行星的形成应首先开始于对流终结的区域。  相似文献   

20.
We study the viscous evolution of protoplanetary discs driven by the combined action of magnetohydrodynamic turbulence, resulting from the magneto-rotational instability (MRI), self-gravity torques, parametrized in terms of an effective viscosity and an additional viscous agent of unspecified origin. The distribution of torques driving the evolution of the disc is calculated by analysing where in the disc the MRI develops and, to incorporate the effect of self-gravity, calculating the Toomre parameter. We find that, generally, discs rapidly evolve towards a configuration where the intermediate regions, from a fraction of an au to a few au, are stable against the MRI due to their low-ionization degree. As an additional source of viscosity is assumed to operate in those regions, subsequent evolution of the disc is eruptive. Brief episodes of high mass accretion ensue as the criterion for the development of the MRI is met in the low-ionization region. The radial distribution of mass and temperature in the disc differs considerably from disc models with constant α parameter or layered accretion models, with potentially important consequences on the process of planet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号