首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
针对北斗三号卫星导航系统(BDS-3)向全球提供定位、导航和授时(PNT)服务后的定位性能评估问题,基于MGEX (Multi-GNSS Experiment) WHU2站7天实测数据,从可视卫星数、几何精度衰减因子(GDOP)、定位精度、定位成功率和伪距残差方面分析了BDS-3及BDS/GNSS组合伪距单点定位(SPP)性能. 结果表明:在亚太地区,BDS-3具有比美国的GPS、俄罗斯的GLONASS、欧洲的Galileo更优的SPP性能,其水平、垂直和三维精度分别为1.19 m、2.34 m、2.38 m,三维精度比北斗二号卫星导航系统(BDS-2)、GPS、GLONASS和Galileo 的SPP精度分别提升了54.8%、27.2%、86.4%和1.2%. 此外,BDS/GPS/Galileo组合能获得最优的SPP精度,其水平、垂直和三维精度分别为0.96 m、1.66 m、1.77 m,相较于BDS-2/BDS-3 SPP分别提升了18.6%、19.4%和17.3%.   相似文献   

2.
随着北斗卫星导航系统(BDS)的全球组网成功,基于BDS的应用研究正在如火如荼的进行中,尤其是包括BDS在内的多频多模融合定位正成为研究的重点. 利用MGEX (Multi-GNSS Experiment)多个测站的BDS、GPS、GLONASS、Galileo观测数据,基于RTKLIB开源代码,在Visual Studio 2017平台上进行了BDS/GPS、BDS/GLONASS、BDS/Galileo三种组合系统的精密单点定位(PPP)实验,从静态PPP、动态PPP、可见卫星数、精度衰减因子(DOP)等方面对比分析了三种组合系统的定位性能. 实验结果表明:BDS/GPS组合系统的可见卫星数最多,各DOP值最小,静态PPP收敛后三个方向的精度优于6 cm. 不论是静态PPP还是动态PPP,其定位性能都最好;BDS/GLONASS、BDS/Galileo组合系统动态PPP的定位抖动较大,可见卫星数都要小于BDS/GPS组合系统,收敛时间较长,两者的动态PPP定位性能也差于BDS/GPS组合系统.   相似文献   

3.
通过载噪比(CNR)、数据完整率、伪距与载波相位观测值噪声和伪距多路径效应四个指标对北斗三号卫星导航系统(BDS-3)新频点B1C/B2a车载动态数据的特性进行了分析,测试了BDS-3新频点动态精密单点定位(PPP)的性能,并与其它全球卫星导航系统(GNSS)进行了对比. 试验结果表明,BDS-3新频点B2a平均CNR优于北斗卫星导航系统(BDS)其它频率,但略差于GPS L5;相较于其它GNSS,BDS数据完整率相对较高,其中BDS-3 B2a新频点数据完整率最高;BDS-3 B2b伪距观测值噪声最小,B1C和B2a伪距观测值噪声约为B2b信号的3倍,但不同频率相位观测值噪声处于同一量级;对于伪距多路径而言,BDS-3 B1C/B2a 信号略小于B2b 信号. 总体而言,GPS L5信号抑制多路径效应的能力最强. 在动态PPP性能方面,BDS-3 B1C/B2a双频组合动态PPP定位精度最优,其三维(3D)均方根(RMS)误差为0.439 m,相比BDS B1I/B3I、GPS L1/L2、GLONASS G1/G2和Galileo E1/E5a双频组合PPP,其精度改善率分别为49%、56%、81%和42%.   相似文献   

4.
针对单频精密单点定位(PPP)两种常用的定位模型:非组合模型和附加电离层约束模型,同时综合考虑电离层约束模型三种不同约束策略(常数约束,时空约束,逐步松弛),对比分析了其使用GPS单系统及GPS+BDS双系统观测值的定位收敛时间,定位精度及其优缺点. 实验结果表明:使用GPS单系统,附加不同电离层约束对单频PPP收敛时间缩短效果显著,其中逐步松弛约束平均收敛时间最短,其平均收敛时间为32.36 min,四种定位模型收敛后的定位精度基本相当. 加入北斗卫星导航系统(BDS)后,四种定位模型的收敛时间均有不同程度的缩短,其中时空约束模型缩短最为显著,收敛时间缩短为单系统的59.22%. 在定位精度方面,加入BDS观测值后水平方向定位精度可提升0.5~1.3 cm,垂直方向定位精度略有下降.   相似文献   

5.
为探讨不同区域不同系统伪距单点定位的精度,本文建立了四种单系统伪距单点定位模型,对各单系统的定位结果进行对比分析.选取MGEX提供的全球卫星导航系统(GNSS)数据作为算例分析.结果表明:不同的区域,各单系统体现出不同的定位效果;在N、E和U方向上,GPS的定位残差多数在-5~5 m之间变化;GLONASS的定位残差均在-15~15 m之间变化;北斗卫星导航系统(BDS)在亚洲区域的定位结果远优于其他区域,残差变化较平缓.Galileo受时段长度的限制,对于较长的有效时段,Galileo在三个方向上的定位结果稳定,定位精度也可达到5 m   相似文献   

6.
多星座组合定位可以提升导航定位性能,但不同星座观测量组合时需要考虑合适的随机模型.传统方法是根据经验直接设定各系统的等价权重,但会导致随机模型确定不精确,从而影响组合系统的性能提升.将Helmert方差分量估计方法应用于GPS/GLONASS/BDS/Galileo组合精密单点定位(PPP)中,以自适应确定各系统间权比.采用国际GNSS服务(IGS)MGEX(Multi-GNSS Experiment)观测网的10个测站一周的观测数据进行静态和仿动态试验.结果表明:采用Helmert方差分量估计定权方法可显著提高GPS/GLONASS/BDS/Galileo组合PPP的收敛速度,与等权定权方案比较,静态模式下平均提高52%,仿动态模式下平均提高64%.因定位精度主要由载波相位观测值精度和误差修正水平决定,在静态和仿动态测试中Helmert方差分量估计方法对定位精度没有明显改善.  相似文献   

7.
GPS/GLONASS组合点定位模型及其精度分析   总被引:2,自引:0,他引:2  
GPS与GLONASS系统的联合应用有利于提高单点定位的精度及稳定性。文中简要介绍GPS/GLONASS等导航系统,讨论GPS/GLONASS组合单点定位算法,并采用拉萨IGS站的观测数据计算分析GPS与GLONASS伪距单系统以及组合系统单点定位精度。结果表明组合定位精度优于单系统定位。  相似文献   

8.
随着大众市场对高精度定位需求增加,基于低成本小型化设备的全球卫星导航系统(GNSS)高精度定位成为研究热点之一. 本文以低成本多系统GNSS接收机μ-blox M8P型号为例,分析其观测数据质量,研究其伪距单点定位和单频载波相对定位的定位性能和特点,为低成本GNSS接收机高精度定位应用提供参考. 实验结果表明,与测量型接收机相比,μ-blox输出GNSS观测值的载噪比略小,伪距和载波相位的测量噪声较大. 静态模式下,μ-blox的单频载波相对定位(基线长度约为430 m)可以提供厘米级的定位精度;城市环境动态模式下,其单频载波相对定位可提供亚米级至米级的定位精度. 信号受限环境下,GPS/GLONASS双系统能够提供更稳定的定位结果.   相似文献   

9.
GNSS伪距单点定位速度快且不存在整周模糊度问题,其原理简单易于编程实现,所以在进行GNSS数据处理时,经常用到该方法。本文以GPS、GLONASS、BDS多模融合为例,简单介绍多模融合存在的坐标统一、时间基准统一问题,再详细介绍多模融合伪距单点定位原理以及解算模型,基于Visual Studio2010平台,编写GPS、GLONASS、BDS多模融合的伪距单点定位及单点测速程序。结合相关算例,对该程序多系统伪距单点定位的精度以及单点测速精度进行分析。   相似文献   

10.
随着位置服务的发展,人们对定位精度的需求不断提升,目前智能手机定位精度仅为米级.?2016年谷歌宣布允许开发者获取手机全球卫星导航系统(GNSS)原始观测数据,为研究手机GNSS高精度定位算法提供了支持.?由于智能手机获取的伪距噪声较大,单纯利用伪距进行单点定位或伪距差分定位精度有限,很难达到较高精度.?为此在对数据质...  相似文献   

11.
BeiDou、Galileo、GLONASS、GPS多系统融合精密单点   总被引:2,自引:1,他引:1  
任晓东  张柯柯  李星星  张小红 《测绘学报》2015,44(12):1307-1313
随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。  相似文献   

12.
文中在GPS精密单点定位(PPP)理论与方法的基础上,给出了多系统组合的精密单点定位技术观测模型,采用GPS、GLONASS、GALILEO、BDS 四大卫星导航定位系统的实测数据,研究并分析了四系统组合PPP的定位性能。结果表明,多系统PPP精度较单系统有很大提高,GPS+GLONASS+GALILEO+BDS四系统组合动态PPP在三个方向平均偏差约为0.7 cm、0.6 cm和1.7 cm,收敛时间为15~20 min左右,并且多系统PPP在截止高度角增大时,依然有充足的卫星数量,当截止高度角达到30°时,依然能达到cm级定位精度,对机载动态数据进行PPP解算结果显示,四系统组合解算的结果与利用GrafMov的解算结果符合得最好,优于其他双系统和单系统PPP的精度。   相似文献   

13.
为进一步改善精密单点定位(PPP)探测大气可降水量(PWV)的性能,本文提出采用GPS/BDS/GLONASS/Galileo组合PPP进行PWV反演的方法,并利用国内3个MGEX(multi-GNSS experiment)观测站的实测数据,对GPS/BDS/GLONASS/Galileo组合PPP在大气水汽探测方面的性能进行了评估。试验结果表明:相较于GPS PPP、GPS/BDS组合PPP和GPS/GLONASS组合PPP,GPS/BDS/GLONASS/Galileo组合PPP估计天顶对流层延迟(ZTD)的初始化时间分别缩短了33%、26%、20%,且能获得更高精度的ZTD估值和PWV信息,在大气水汽探测方面的性能更优。  相似文献   

14.
随着移动互联网的发展与智能手机的普及,大众用户对高精度位置服务的需求日益增加。目前Google公司Android操作系统已开放GNSS原始观测值接口,采用智能手机实现传统适用于专业设备的PPP、RTK等高精度定位成为可能,因此采用原始观测值进行智能手机高精度定位成为研究热点。本文基于协同精密定位服务平台提供的实时轨道、实时钟差与电离层产品信息,实现了智能手机的PPP高精度定位处理。通过实测验证表明:在理想观测条件下,主流智能手机小米8与华为P10实现PPP定位精度水平优于1 m,相对标准伪距单点定位精度分别提高36%和47%。  相似文献   

15.
为了对多个全球导航卫星系统(global navigation satellite system, GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system, GPS)、格洛纳斯卫星导航系统(global navigation satellite system, GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system, Galileo)、北斗卫星导航系统(BeiDou navigation satellite system, BDS)、准天顶卫星系统(quasi-zenith satellite system, QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播星历轨道、钟差精度大幅度变好,切向轨道、法向轨道与钟差精度已赶超GPS;BDS的广播星历轨道精度离散度较大,钟差精度出现不稳定现象;QZSS的广播星历轨道与钟差精度的稳定性与离散度相对最差。以2018年1 a的广播星历与精密星历为例分析了各个系统当前的广播星历精度,结果表明,当前GPS、GLONASS、Galileo、BDS、QZSS的考虑轨道误差与钟差误差贡献的空间信号测距误差(signal-in-space ranging error,SISRE)分别为0.806 m、2.704 m、0.320 m、1.457 m、1.645 m,表明Galileo广播星历整体精度最高,GPS次之,其次分别是BDS、QZSS和GLONASS。只考虑轨道误差贡献的SISRE分别为0.167 m、0.541 m、0.229 m、0.804 m、0.675 m,表明GPS广播星历轨道精度最高,其次分别是Galileo、GLONASS、QZSS和BDS。GPS卫星广播星历中新型号卫星的钟差精度总体要优于旧型号卫星。  相似文献   

16.
Combined GPS/GLONASS precise point positioning (PPP) can obtain a more precise and reliable position than GPS PPP. However, because of frequency division multiple access, GLONASS carrier phase and pseudorange observations suffer from inter-channel biases (ICBs) which will influence the accuracy and convergence speed of combined GPS/GLONASS PPP. With clear understanding of the characteristics of carrier phase ICBs, we estimated undifferenced GLONASS pseudorange ICBs for 133 receivers from five manufacturers and analyzed their characteristics. In general, pseudorange ICBs corresponding to the same firmware have strong correlations. The ICB values of two receivers with the same firmware may be different because of different antenna types, and their differences are closely related to frequency. Pseudorange ICBs should be provided for each satellite to obtain more precise ICBs as the pseudorange ICBs may vary even on the same frequency. For the solutions of standard point positioning (SPP), after pseudorange ICB calibration, the mean root mean square (RMS) improvements of GLONASS SPP reach up to 57, 48, and 53 % for the East, North, and Up components, while combined GPS/GLONASS SPP reach up to 27, 17, and 23 %, respectively. The combined GPS/GLONASS PPP after pseudorange ICB calibration evidently improved the convergence speed, and the mean RMS of PPP improved by almost 50 % during the convergence period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号