首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《岩土力学》2017,(1):10-18
水合物含量和水合物赋存模式都会对含水合物沉积物的力学特性产生影响,但目前的本构模型很少考虑水合物赋存模式的影响。在分析水合物赋存模式对含水合物沉积物力学特性影响机制的基础上,提出了采用有效水合物饱和度来描述水合物赋存模式对沉积物力学特性的影响。基于前人建立的含水合物沉积物的统计损伤本构模型,假设含水合物沉积物微元强度服从Weibull分布,采用Drucker-Prager强度准则描述微元强度,建立了考虑水合物赋存模式影响的含水合物沉积物的统计损伤本构模型。该模型修正了水合物含量和试验围压对弹性模型的影响关系式,并且建立了模型参数m和F_0与水合物饱和度s_h和试验围压σ_3之间的关系。通过与试验数据的对比,说明该模型能很好地模拟含水合物沉积物的应力-应变关系,反映水合物含量和水合物赋存模式对含水合物沉积物的刚度、强度、应变软化等力学特性的影响规律。  相似文献   

2.
杨期君  赵春风 《岩土力学》2014,35(4):991-997
天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。  相似文献   

3.
水合物含量、有效围压是影响含天然气水合物沉积物力学性质的主要因素,在忽略其他次要因素(包括水合物种类、试样颗粒大小、试验条件等)的情况下,水合物含量和有效围压是决定试样弹性模量的两个关键参数。在分析等效弹性模量与水合物含量相互关系的基础上,考虑有效围压的影响,建立了弹性模量与有效围压的幂函数关系;同时采用Drucker-Prager破坏准则来表示含天然气水合物沉积物微元强度,并假设其微元强度服从Weibull分布,从而建立了含天然气水合物沉积物的损伤统计本构模型,与不同有效围压下的试验结果及已有研究成果相比较,表明了所建模型能够很好地模拟三轴剪切条件下含水合物沉积物试样的应力-应变关系特性。此研究成果可对含天然气水合物沉积物工程性状的数值模拟提供参考。  相似文献   

4.
张小玲  夏飞  杜修力  许成顺 《岩土力学》2019,40(11):4229-4239
天然气水合物是一种新型的清洁能源,具有广阔的应用前景。但在水合物开采过程中温压条件的改变会引起水合物的分解,导致含水合物沉积物胶结强度的丧失;同时,沉积物在加载过程中由于其内部微裂纹、缺陷逐渐扩展以及土颗粒间的水合物逐渐破碎也会引发含水合物沉积物的损伤,而以往对于水合物分解过程中多场耦合模型的研究忽略了沉积物结构损伤演化过程及其对耦合过程的影响。因此,基于连续损伤理论,在损伤统计本构模型中引入三参数的Weibull分布和残余强度修正系数,建立起考虑损伤阈值和残余强度影响的含水合物沉积物损伤统计本构模型;进而将本构模型嵌入到水合物分解过程的多场耦合模型中,建立了考虑含水合物沉积物损伤的温度-应力-渗流-化学(THMC)多场耦合数学模型;基于该模型讨论了含水合物沉积物结构损伤对水合物分解过程中沉积物储层的变形、压力、温度等因素的影响规律。通过计算分析发现:含水合物沉积物结构损伤对水合物分解的多场耦合过程具有显著影响,并且随着分解时间的增加,其影响逐渐增大。  相似文献   

5.
环境温度和孔隙压力对含水合物沉积物的力学特性存在重要影响,深刻揭示温度和孔隙压力对含水合物沉积物力学特性的影响机制并对其进行有效地模拟是含水合物地层稳定性评估的前提。在分析温度和孔隙压力变化对含水合物沉积物的力学特性影响机制的基础上,引入温压条件参数来考虑温度和孔隙压力变化对含水合物沉积物力学特性的影响,建立了考虑温度和孔隙压力影响的损伤本构模型。模型假设含水合物沉积物微元强度服从Weibull分布,采用Drucker-Prager强度准则描述微元强度,建立了损伤因子的演化规律。此外,还提供了一套模型参数的确定方法。通过一系列不同温度压力条件下的含水合物沉积物的三轴压缩试验结果对模型进行校核和验证,结果表明,该模型能很好地模拟含水合物沉积物的应力-应变关系,并且能较好地考虑水合物含量、环境温度和孔隙压力对含水合物沉积物的力学特性的影响。  相似文献   

6.
深埋隧道层状岩体弹塑性本构模型研究   总被引:2,自引:1,他引:2  
共和隧道围岩为薄层状灰岩,岩样试件单轴压缩全过程曲线表现为明显的各向异性,且隧道现场监测发现围岩屈服破坏也具有明显的方向性。据此选择合适的屈服准则及其强度参数随岩层倾角(与最大主应力的夹角)变化规律。结合各向异性弹性本构方程,获得横观各向同性弹塑性本构关系并利用C++语言实现。利用该本构模型对共和隧道进行数值模拟,计算结果与破坏特征基本吻合,验证了该模型的正确性,可以用于该隧道支护设计及稳定性分析。  相似文献   

7.
层状盐岩体三维Cosserat介质扩展本构模型的程序实现   总被引:2,自引:1,他引:2  
尹雪英  杨春和  李银平 《岩土力学》2007,28(7):1415-1420
对层状盐岩体内的油(气)储存硐室进行稳定性计算时,如何选用恰当的本构模型来反映层状盐岩体的特点是至关重要的。针对我国大多数盐矿为多层盐岩的地质构造特征,基于宏观平均意义下的考虑细观弯曲效应的三维Cosserat介质扩展本构模型,结合FLAC3D软件的主要计算思路,使用VC++平台开发了该模型的FLAC3D接口程序,并编译成动态链接库DLL文件。经算例验证,该程序的计算结果可靠,不仅可以考虑不同力学特性的岩层先后破坏引起复合体单元的渐进损伤破坏,而且引入了夹层体积含量等统计参数后可大大节省单元网格数量,为大型层状岩体内的地下硐室稳定性数值模拟计算奠定了基础。  相似文献   

8.
蒋明镜  刘俊  周卫  奚邦禄 《岩土力学》2018,39(4):1153-1158
天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服系数与水合物饱和度之间的函数关系,并修正了原有的结构性砂土破损规律,建立了深海能源土弹塑性本构模型。另外,根据该模型模拟了另外一组深海能源土三轴剪切试验和等向固结压缩试验。计算结果表明:新建立的深海能源土本构模型可以有效模拟深海能源土剪切强度随水合物饱和度之间的增长关系;随着水合物饱和度的增加,三轴压缩试验中深海能源土峰值强度及割线模量(E50)逐渐增加,等向固结压缩试验中屈服强度增加,与试验结果有较好的一致性,表明了该模型的合理性。  相似文献   

9.
从内时理论出发,通过内蕴时间的重新构造,在Helmholtz自由能中引入损伤变量,利用连续介质不可逆热力学的基本原理推导出了含瓦斯煤岩的内时损伤本构方程,并给出了确定本构模型中各参数的方法。同时,对在三轴应力条件下所建立的本构方程进行了求解分析与试验验证。结果表明,该本构方程能很好地描述含瓦斯煤岩在损伤发生前后的变形特点,并能有效地反映含瓦斯煤岩的非线性和剪胀扩容等物理力学现象。  相似文献   

10.
土体的本构模型是分析计算土工结构变形规律的关键。自剑桥模型提出以来,对于土体本构模型的研究,各国学者在不同环境条件下发展研究了适用于相应试验条件下的各类模型。随着寒区经济的发展,关于冻土力学性质的研究日益增多,许多学者借鉴常规融土的研究方法建立了不同条件下的冻土弹塑性本构模型。为了进一步理清冻土变形行为的特征,完善适用于冻土弹塑性行为的本构模拟理论和方法,作者总结和分析了各类冻土弹塑性本构模型的理论基础、建模方法、参数确定方法等内容,对进一步发展可准确描述冻土复杂力学行为的本构模型具有指导意义。  相似文献   

11.
加筋土本构模型研究进展   总被引:9,自引:0,他引:9  
概括了加筋土理论计算的分析方法 ,对采用复合模型进行研究所必须的加筋土本构模型的进展进行综述 ,综合分析了各种加筋土本构模型的适用条件和局限性 ,提出了今后加筋土本构模型研究的重点  相似文献   

12.
土结构性本构模型研究现状综述   总被引:3,自引:2,他引:3  
土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们已提出数以百计的土本构模型,诸多文献也对这些模型进行了评述和归纳。然而这些土本构模型多是在扰动土或砂土的基础上发展和建立起来的,它们难以描述由于土结构性引起的各种非线性行为,其计算结果与实际情况相差甚远。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。针对这个现实,目前有些学者已基于各种理论和方法,提出了一些可以考虑土结构性影响的土本构模型,并得了较好的应用。但在目前的文献中还很少有对土的结构性本构模型研究进行归纳,基于此,本文简要介绍了一下目前土的结构性本构模型研究现状,并提出了这些本构模型在应用中所存在的问题。  相似文献   

13.
土的本构模型研究现状及发展趋势   总被引:2,自引:0,他引:2  
雷华阳 《世界地质》2000,19(3):271-276
从两方面总结了前人关于土体本构关系的成果以及目前的发展状况:一方面,从宏观现象学角度介绍了剑桥模型、弹性-硬化塑性模型以及为描述循环荷载条件下土的本构特性所建立的多重屈服面模型和边界模型;另一方面,阐述了土的微观结构和土微结构力学模型的研究状况。认为今后的土本械模型研究趋势必将与土的结构性研究紧密相联,成为21世纪土力学的核心。  相似文献   

14.
考虑损伤的节理本构模型   总被引:4,自引:0,他引:4  
本文在弹塑性损伤的理论框架内,讨论了节理等地质间断面的本构模型。这个模型能够反映节理面的损伤弱化,扩容和弹性刚度劣化等复杂特性。这个模型的另一优点是,塑性变形增量与屈服面是非正交的,但本构矩阵具有对称性。这种对称性在岩石力学的理论研究和数值分析中是至关紧要的。  相似文献   

15.
深海能源土是指含天然气水合物(俗称"可燃冰")的深海沉积物,其本构特性的模拟对可燃冰的安全开采至关重要。首先分析了水合物对能源土强度、剪胀和软化等力学特性的影响机理,水合物饱和度越大,对能源土力学特性影响越显著。然后在修正剑桥模型的基础上,通过引入水合物的饱和度和统一硬化参数来修正屈服函数,以反映水合物对能源土强度、剪胀、软化等特性的影响,建立了能考虑天然气水合物胶结作用形成及退化影响的深海能源土弹塑性本构模型,推导了相应的弹塑性矩阵。最后,通过模拟结果与已有能源土三轴试验数据对比分析,表明模型能很好地预测能源土强度、剪胀和软化等特性,验证了模型的合理性和有效性。  相似文献   

16.
天然气水合物是一种战略性替代能源。同时,开发天然气水合物将是全球气候环境问题和地质灾害的诱发因素之一。含天然气水合物沉积物(简称HBS)的相平衡问题对天然气水合物资源勘探、评估与开发利用以及环境影响均具有重要的基础作用。自然界中赋存于沉积物之中的天然气水合物的生成与分解与纯水体系中水合物的生成与分解具有很大区别。通过总结国内外研究资料,以天然气水合物开发利用中的岩土工程问题研究需要为出发点,详细介绍了HBS的沉积物物性、孔隙水盐度和气体组分对沉积物中水合物相平衡关系影响以及HBS相平衡研究中有关制样方法技术、各组分含量测试以及相平衡关系理论模型研究方面的国内外研究现状。研究成果表明,HBS的沉积物物性、孔隙水盐度和气体组分均对天然气水合物相平衡关系具有显著影响,试验研究中应用了很多先进方法技术,但仍然存在定量精度较低或实施成本较高等问题;基于微观尺度建立的有关HBS的相平衡宏观模型能较好地模拟与预测HBS的相平衡关系,但其表达式复杂、参数较多和不易获得制约了其在天然气水合物开采中的有关岩土力学与工程理论研究和工程实践中应用  相似文献   

17.
土体弹塑性本构模型研究概述   总被引:1,自引:0,他引:1  
土的本构模型是对土体进行研究和土工数值分析的关键。本文对土体弹塑性本构模型的发展过程加以介绍,并侧重介绍了近年来正在发展中的模型。  相似文献   

18.
混凝土损伤塑性本构模型研究   总被引:3,自引:0,他引:3  
提出了一种新的损伤塑性本构模型,强调了应力三轴比对塑性屈服的影响.采用本研究设计的专门用于本构校验的计算机软件,对上述模型的应力应变加载曲线进行了数值模拟,数值结果与实验结果吻合得比较好.  相似文献   

19.
通过长江河口地区水下表层沉积物样品多种化学元素的赋存形态分析测试数据,综合分析重金属元素的赋存形态特征。研究结果显示:镉、汞、铅残渣态所占比例均小于50%,锌、砷、铬、铜、镍残渣态占比均大于50%;8个元素的残渣态与全量呈显著正相关关系。沉积环境和沉积物粒径对重金属元素赋存形态具有重要影响。沉积物的物质来源、矿物组成特征、水动力作用与沉积物粒度和物理化学条件等是长江口地区表层沉积物重金属元素赋存形态的主要控制因素。  相似文献   

20.
冯世进  邓英军 《岩土力学》2014,35(9):2455-2463
城市固体废弃物(MSW)是由多种无机和有机成分组成的复合材料,具有高压缩性和可降解性。随着时间的变化,基本的物理力学特性发生变化,与传统土体相比,性质差异较大。城市固体废弃物的本构模型对于垃圾填埋场中土工问题的研究极其重要,考虑不同因素的影响,系统总结了国内外一些学者对MSW本构模型的研究现状,指出已有的研究成果主要考虑了荷载引起的瞬时变形、机械蠕变、生物降解、纤维物质的加筋作用等,但这些都是考虑单个因素或者将几个因素简单叠加的本构模型,并未考虑不同因素的耦合作用。结合土体本构模型的发展特点,指出了今后城市固体废弃物本构模型的研究方向和发展趋势:应当综合考虑各种因素对MSW应力-应变关系的影响,从工程实践出发,通过岩土工程、环境工程、化学工程和生物工程等学科的交叉寻求突破,形成考虑生化反应-骨架变形-水气运移-溶质迁移耦合作用的理论框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号