共查询到14条相似文献,搜索用时 62 毫秒
1.
一种基于分数阶傅里叶变换的改进图像加密算法 总被引:1,自引:0,他引:1
针对目前基于分数阶傅里叶变换的图像加密算法中存在的不足,设计了一种基于分数阶傅里叶变换和混沌系统的图像加密新算法。图像加密过程分两个步骤:首先将原始图像的分数阶傅里叶变换系数经过双随机相位加密,然后利用混沌系统生成的置乱矩阵对图像进行置乱加密后得到最终的加密图像。方案的安全性依赖于随机相位掩膜、分数阶傅里叶变换阶数以及混沌系统的初始参数。理论分析和模拟实验结果表明该方案具有良好的图像加密效果。 相似文献
2.
建立大坝变形预测的支持向量机模型,并用遗传算法对支持向量机模型的核函数参数、惩罚参数和损失参数进行优化。将同一优化方法不同支持向量机核函数、不同优化方法同种支持向量机核函数进行横向对比,将BP神经网络、自回归AR(p)模型、多元回归分析法和周期函数拟合法进行纵向对比。结果表明,该GA-SVM(RBF)模型不仅能较好地预测大坝的变形趋势,而且能大幅提高预测精度。 相似文献
3.
基于改进局部均值分解(LMD)及加权核函数相关向量机(RVM)算法,构建多尺度变形预测新方法。利用LMD将变形数据分解成多个具有物理意义的变形分量,并基于遗传算法优化的RVM对每个变形分量分别进行预测。将各变形分量预测结果进行叠加,最终建立多尺度变形预测方法,并应用于大坝变形预测。实验结果表明,改进LMD-RVM方法的多个精度指标均优于BP神经网络方法、RVM方法和改进EMD-RVM方法,证实了新方法的有效性及可靠性。 相似文献
4.
针对高铁变形监测数据的非线性特征,构建一种基于小波与灰色支持向量机的高铁变形预测组合模型。利用小波分析获取不同时频尺度上的随机序列和近似序列,通过嵌入维数的确定和高低频数据的相关性分析,将重构后的随机序列作为遗传算法优化SVR模型的输入,对近似序列则采用灰色支持向量机来描述其演变特征,最后将二者预测结果进行耦合叠加,得到小波灰色支持向量机的组合模型预测结果。以贵广高铁实测数据为例,将均方差、平均绝对误差、平均绝对相对误差作为评判指标对预测效果进行评价,结果表明该模型较好地拟合了近似分量,同时避免了细节分量的过拟合,为高铁变形预测提供了新途径。 相似文献
5.
6.
传统距离多普勒算法(RD)较低精度的SAR成像质量越来越不能满足当前实际应用的需要。为解决传统距离多普勒算法成像性能低的问题,本文提出基于分数阶Fourier变换的高性能SAR成像算法(FrFT-RD)。本文详细推导SAR距离向信号运用分数阶Fourier变换时最佳阶数的计算表达式,同时给出方位向相应的计算式。理论分析表明距离(方位)向最佳阶数均取决于SAR成像参数并具有唯一性,无须迭代运算,可极大提高FrFT-RD算法的工程实用性。根据计算得到的距离向和方位向上最优阶数,在分数阶Fourier变换域完成FrFT-RD算法的构建。机载SAR模拟数据和星载SAR实测数据测试表明,FrFT-RD算法在分辨率、峰值旁瓣比(PSLR)成像性能方面比传统RD算法均得到显著提高,其中距离向和方位向分辨率提高比值分别为45.92%和48.06%;距离向PSLR和ISLR降低幅度为1.45 dB和2.59 dB,而FrFT-RD算法在方位向PSLR和ISLR成像性能方面与传统RD算法相当。 相似文献
7.
提出一种基于灰色最小二乘支持向量机的大坝变形预测新算法。通过对原始大坝序列进行一次累加,弱化序列中随机扰动的影响,增强数据的规律性,进而建立最小二乘支持向量机预测模型,并采用网格搜索法选取最优参数。算法充分利用了最小二乘支持向量机泛化能力强、非线性拟合性好等优良特性,避免了灰色方法及模型存在的理论缺陷。与灰色GM(1,1)和单一最小二乘支持向量机对比表明,新算法能保证较优的局部预测值和较好的全局预测精度,应用于短期大坝变形预测是可行的。 相似文献
8.
针对LSSVM模型参数选择的随机性与单一变量序列高维度重构参数选择的困难性,将相空间重构理论、果蝇优化算法引入LSSVM模型中,建立基于相空间重构的FOA-GLSSVM变形预测模型。为了验证提出模型的有效性与可靠性,结合具体工程实例与GLSSVM、支持向量机模型及最小二乘支持向量机模型进行对比研究。结果表明,提出的模型精度更好、稳定性更强。 相似文献
9.
文章针对大坝变形受多种不确定性因素的影响,提出一种基于小波分解和最小二乘支持向量机的大坝变形预测方法。利用小波将大坝位移序列分解成不同频率特征的子序列,根据分解得到的子序列特点,同时考虑水位和温度的影响,构造不同的最小二乘支持向量机模型对子序列进行预测,最后对各子序列预测值进行重构得到最终的预测值。实验对比分析表明,该方法对大坝变形的预测具有较高的精度。 相似文献
10.
针对大坝变形具有非线性和非平稳性的特点,提出一种基于集合经验模态分解(EEMD)的大坝变形多步预测新算法。首先从时频分析出发,利用集合经验模态分解将变形时间序列分解成具有不同频率特征的分量;然后采用游程判定法对波动程度相似的分量重构为高、中和低频3个分量;最后对3个分量分别建立相应的多步预测模型,叠加各预测值即为最终预测结果。经算例验证,并与AR模型、BP神经网络和支持向量机的多步预测进行对比分析,同时建立不同预测步长进一步验证。结果表明,该算法预测精度较高,在大坝变形波动剧烈的时段也能保证较好的预测效果,可以应用于大坝变形预测。 相似文献
11.
李晓斌 《大地测量与地球动力学》2022,42(6):588-593
为准确掌握库区滑坡变形潜势,在变形监测成果统计基础上,首先利用极限位移准则开展滑坡现状变形潜势分析;然后以相关向量机为理论基础,通过优化处理保证其参数最优性,构建滑坡变形预测模型,并以预测结果开展滑坡变形潜势的发展趋势评价;最后结合两种分析结果,实现滑坡综合变形潜势分析。结果表明,不同监测点的现状变形潜势状态存在一定差异,由不利原则可知,现状变形潜势等级为Ⅳ级,潜势程度属严重状态;滑坡变形仍会进一步增加,变形潜势趋于不利方向发展。综合两种分析结果可知,滑坡变形潜势处于不利状态,后期失稳可能性较大,应加强灾害防治,避免成灾损失。 相似文献
12.
将深度全连接神经网络引入大坝变形预测领域,结合大坝多源监测数据的训练样本,建立基于深度全连接神经网络的大坝变形预测模型.利用几种常见的深度优化学习算法对模型进行优化训练,通过对比各损失函数的变化曲线选取最优学习算法,进一步构建基于最优学习算法的深度全连接神经网络大坝变形预测模型;最后结合大坝多源监测数据的测试样本对模型... 相似文献
13.
水资源信息的预测可以为水资源的合理调配、管理和规划提供依据,为提高拟合和预测精度,建立基于支持向量机的水资源信息预测模型,采用捕鱼算法对其参数优化,并应用于地下水水位预测的实例分析,且拟合及预测精度均较高,与神经网络模型方法所取得的结果进行比较,能取得更好效果,表明将回归支持向量机用于水资源信息的拟合、预测是可行的. 相似文献
14.
水资源信息的预测可以为水资源的合理调配、管理和规划提供依据,为提高拟合和预测精度,建立基于支持向量机的水资源信息预测模型,采用捕鱼算法对其参数优化,并应用于地下水水位预测的实例分析,且拟合及预测精度均较高,与神经网络模型方法所取得的结果进行比较,能取得更好效果,表明将回归支持向量机用于水资源信息的拟合、预测是可行的。 相似文献