首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
Tidal deformation of the Earth is normally calculated using the analytical solution with some simplified assumptions, such as the Earth is a perfect sphere of continuous media. This paper proposes an alternative way, in which the Earth crust is discontinuous along its boundaries, to calculate the tidal deformation using a finite element method. An in-house finite element code is firstly introduced in brief and then extended here to calculate the tidal deformation. The tidal deformation of the Earth due to the Moon was calculated for an geophysical earth model with the discontinuous outer layer and compared with the continuous case. The preliminary results indicate that the discontinuity could have different effects on the tidal deformation in the local zone around the fault, but almost no effects on both the locations far from the fault and the global deformation amplitude of the Earth. The localized deformation amplitude seems to depend much on the relative orientation between the fault strike direction and the loading direction (i.e. the location of the Moon) and the physical property of the fault.  相似文献   

2.
Summary. A model of the tides in a hemispherical ocean is used to investigate the effect of changes in the Earth's rotation rate on the power dissipated by the ocean tides. The results obtained are then used in an idealized astronomical model to investigate how they affect the history of the Earth—Moon system.
Using the tidal model it is found that at rotation rates higher than that of the present Earth, the power dissipated by the semi-diurnal tides in the ocean drops off rapidly as a result of the increased tidal frequency. Thus if the Earth's rotation rate is doubled from its present value, then the rate of energy dissipation in the ocean is reduced to approximately one-third of its present value and the tidal torque is reduced by a factor of about 6.
The present value for secular acceleration of the Moon, calculated from the results of the tidal model is -30.5 arcsec century-2. Using this value in the astronomical model, which has the Moon and Sun in circular orbits above the equator, and assuming that the tidal torque is independent of the tidal frequency, the Gerstenkorn event is predicted to have occurred 1.3 × 109 yr ago.
When the astronomical model is run with a torque determined at all times from the tidal model, the reduction in the energy dissipated early in the history of the system, leads to a Gerstenkorn date of 5.3 × 109 yr ago. However, dissipation within the solid earth is found to be important early in the history of the system and when this effect is included it gives a date for the Gerstenkorn event of 3.9 × 109 yr ago.  相似文献   

3.
Intriguing reciprocity relations exist between the static deformation excited by a point dislocation in a SNREI earth and those generated by external forces, such as tidal force, surface loading and surface shear forces. Coseismic deformations can be rewritten as follows: (1) potential change in terms of the tide deformation field, (2) radial displacement in terms of the load and tidal deformation fields, and (3) tangential displacement in terms of shear and torsional deformation fields. The relations greatly reduce the effort to compute the coseismic crustal deformation in a spherically symmetric earth.  相似文献   

4.
The 2004 M = 9.2 Sumatra–Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ∼1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress–strain relation; an aspherical perturbation in viscoelastic structure; a 'static' mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra–Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation.  相似文献   

5.
We present an analytical form of the layer propagator matrix for the response of a locally incompressible, layered, linear‐viscoelastic sphere to an external load assuming that the initial density stratification ϱ 0( r ) within each layer is parametrized by Darwin's law. From this, we show that the relaxation of a sphere consisting of locally incompressible layers is governed by a discrete set of viscous modes. The explicit dependence of the layer propagator matrix on the Laplace transform variable allows us to determine the amplitudes of the viscous modes analytically. Employing Darwin's parametrization, we construct three simplified earth models with different initial density gradients that are used to compare the effects of the local incompressibility constraint, div ( ϱ 0 u )=0, and the material incompressibility constraint, div  u =0, on viscoelastic relaxation. We show that a locally incompressible earth model relaxes faster than a materially incompressible model. This is a consequence of the fact that the perturbations of the initial density are zero during viscoelastic relaxation of a locally incompressible medium, so that there are no internal buoyancy forces associated with the continuous radial density gradients, only the buoyancy forces generated by internal density discontinuities. On the other hand, slowly decaying internal buoyancy forces in a materially incompressible earth model cause it to reach the hydrostatic equilibrium after a considerably longer time than a locally incompressible model. It is important to note that the approximation of local incompressibility provides a solution for a compressible earth model that is superior to the conventional solutions for a compressible earth with homogeneous layers because it is based on an initial state that is consistent with the assumption of compressibility.  相似文献   

6.
We present a semi-analytical solution to the 2-D forward modelling of viscoelastic relaxation in a heterogeneous model consisting of eccentrically nested spheres. Several numerical methods for 2-D and 3-D viscoelastic relaxation modelling have been applied recently, including finite-element and spectral-finite-difference schemes. The present semi-analytical approach provides a model response against which more general numerical algorithms can be validated. The eccentrically nested sphere solution has been tested by comparing it with the analytical solutions for viscoelastic relaxation in a homogeneous sphere and in two concentrically nested spheres, and good agreement was obtained.  相似文献   

7.
This paper puts forward the coupling model of the heat-moisture-stress field based on the governing equation of non-stationary heat transfer, moisture movement and the basic differential equations of deformation problem by displacement under axisymmetric conditions. Using a detailed calculation example for the section of the Xiang Pi Mountain in 109th National Highway, a mechanical model of the cylinder made by typical silty clay soil is simulated. Results show that in the coupling process, dynamic stress pays little contribution to the distribution of temperature field along different depths, and the amount of thawing deformation increased with dynamic loading time under the same frequency and amplitude.  相似文献   

8.
Experiments simulating flow in the Earth's liquid core induced by luni-solar precession of the solid mantle indicate, to a first approximation, that the core behaves like a rigidized fluid sphere spinning slower than the mantle and with its spin axis lagging the mantle spin axis in precession. Secondary flow patterns are always present. At low precession rates the fluid sphere is subdivided into a set of cylinders coaxial with the fluid spin axis, the cylinders rotating alternately at slightly faster and slower rates relative to the net retrograde motion of the fluid as a whole. Slow non-axisymmetric columnar wave patterns develop between the differentially rotating cylinders. Axial flows between the spheroidal cavity boundary and the interior are observed. Fluid motion becomes turbulent only at precession rates large enough to cause the fluid spin axis to align nearly with the precession axis. There is no evidence that the Earth's liquid spin axis direction departs more than a fraction of a degree from geographic north. Our observations suggest precession induces a complex variety of laminar flows, including slowly varying and/or periodic patterns, in the Earth's liquid core.  相似文献   

9.
Summary. Using an air turbine at rotation frequencies of between 1.5 and 275 revolutions per second (rps), the dependence of rotational remanent magnetization (RRM) on rotation frequency has been investigated for two igneous samples in and alternating field of 51 mT peak at 50 Hz. The same experimental arrangement has also been used to measure the dependence on rotation frequency of the torque exerted by the alternating field on the rock samples. The dependence of torque and RRM on peak field has also been measured at a rotation frequency of 112 rps and a linear relationship between RRM and torque has been demonstrated.
In an attempt to elucidate the way in which RRM arises, analytical and numerical models of the rock have been developed in order to calculate the torque curves and these agree quite closely with those observed experimentally. While the precise factor responsible for RRM has not yet been identified from the numerical model it is suggested that RRM may arise as a result of particle moments suddenly flipping into the field direction, and thus by virtue of their intrinsic angular momentum acquiring a transient component of magnetic moment antiparallel to the rotation vector describing the flip. This component, due to the hysteresis of the assembly of particles, will not then entirely disappear when the alternating field is removed. An estimate of the transient axial field which can be considered to deflect each moment towards the rotation axis during the flip yields a value of the order of 1 mT.  相似文献   

10.
A conservative staggered-grid finite difference method is presented for computing the electromagnetic induction response of an arbitrary heterogeneous conducting sphere by external current excitation. This method is appropriate as the forward solution for the problem of determining the electrical conductivity of the Earth's deep interior. This solution in spherical geometry is derived from that originally presented by Mackie et al. (1994 ) for Cartesian geometry. The difference equations that we solve are second order in the magnetic field H , and are derived from the integral form of Maxwell's equations on a staggered grid in spherical coordinates. The resulting matrix system of equations is sparse, symmetric, real everywhere except along the diagonal and ill-conditioned. The system is solved using the minimum residual conjugate gradient method with preconditioning by incomplete Cholesky decomposition of the diagonal sub-blocks of the coefficient matrix. In order to ensure there is zero H divergence in the solution, corrections are made to the H field every few iterations. In order to validate the code, we compare our results against an integral equation solution for an azimuthally symmetric, buried thin spherical shell model ( Kuvshinov & Pankratov 1994 ), and against a quasi-analytic solution for an azimuthally asymmetric configuration of eccentrically nested spheres ( Martinec 1998 ).  相似文献   

11.
Analytical approach for the toroidal relaxation of viscoelastic earth   总被引:1,自引:0,他引:1  
This paper is concerned with post-seismic toroidal deformation in a spherically symmetric, non-rotating, linear-viscoelastic, isotropic Maxwell earth model. Analytical expressions for characteristic relaxation times and relaxation strengths are found for viscoelastic toroidal deformation, associated with surface tangential stress, when there are two to five layers between the core–mantle boundary and Earth's surface. The multilayered models can include lithosphere, asthenosphere, upper and lower mantles and even low-viscosity ductile layer in the lithosphere. The analytical approach is self-consistent in that the Heaviside isostatic solution agrees with fluid limit. The analytical solution can be used for high-precision simulation of the toroidal relaxation in five-layer earths and the results can also be considered as a benchmark for numerical methods. Analytical solution gives only stable decaying modes—unstable mode, conjugate complex mode and modes of relevant poles with orders larger than 1, are all excluded, and the total number of modes is found to be just the number of viscoelastic layers between the core–mantle boundary and Earth's surface—however, any elastic layer between two viscoelastic layers is also counted. This confirms previous finding where numerical method (i.e. propagator matrix method) is used. We have studied the relaxation times of a lot of models and found the propagator matrix method to agree very well with those from analytical results. In addition, the asthenosphere and lithospheric ductile layer are found to have large effects on the amplitude of post-seismic deformation. This also confirms the findings of previous works.  相似文献   

12.
13.
Our objectives are as follows. First, we wish to develop a methodology to recover the long-term component of deformation from any set of distributed, time-averaged geodetic strain measurements that were subject to seismic disturbance, given a catalogue of local seismicity that occurred during the measurement period. Second, using seismic and geodetic data sets that span approximately 100 years, we apply this technique in the western Aegean to assess the role of local seismicity in regional deformation. The methodology is developed using a model for crustal deformation constructed from a long-term, smooth regional strain field combined with instantaneous, local perturbations from upper-crustal earthquakes approximated by static elastic dislocations. By inverting geodetic displacements for the smooth field while simultaneously floating influential but uncertain earthquake source parameters, an estimate of the regional component of deformation that is approximately independent of the seismicity can be made. In the western Aegean we find that the horizontal component of regional deformation can be described with minor inaccuracy by a quadratic relative displacement field. The principal horizontal extensional axes calculated from the regionally smooth displacement field agree in orientation with the T-axes of earthquakes in the region. These observations indicate that the instantaneous elastic strain of the 10 km thick seismogenic layer is driven by a stress field that is smooth on the scale of the geodetic network as a whole, 200-300 km.  相似文献   

14.
Measured changes in the Earth's length of day on a decadal timescale are usually attributed to the exchange of angular momentum between the solid mantle and fluid core. One of several possible mechanisms for this exchange is electromagnetic coupling between the core and a weakly conducting mantle. This mechanism is included in recent numerical models of the geodynamo. The 'advective torque', associated with the mantle toroidal field produced by flux rearrangement at the core–mantle boundary (CMB), is likely to be an important part of the torque for matching variations in length of day. This can be calculated from a model of the fluid flow at the top of the outer core; however, results have generally shown little correspondence between the observed and calculated torques. There is a formal non-uniqueness in the determination of the flow from measurements of magnetic secular variation, and unfortunately the part of the flow contributing to the torque is precisely that which is not constrained by the data. Thus, the forward modelling approach is unlikely to be useful. Instead, we solve an inverse problem: assuming that mantle conductivity is concentrated in a thin layer at the CMB (perhaps D"), we seek flows that both explain the observed secular variation and generate the observed changes in length of day. We obtain flows that satisfy both constraints and are also almost steady and almost geostrophic, and therefore assert that electromagnetic coupling is capable of explaining the observed changes in length of day.  相似文献   

15.
Okada (1992) provided expressions for the displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. Starting with these results, we applied the correspondence principle of linear viscoelasticity to derive the quasi-static displacement, strain and stress fields in a viscoelastic, homogeneous and isotropic half-space. We assume that the medium deforms viscoelastically with respect to both the shear and the normal stresses but keeps a constant bulk modulus; in particular, the shear modulus relaxes as Maxwell fluid. We presented the viscoelastic effect on displacement, displacement gradient and stress fields, for a choice of parameter values. The viscoelastic effect due to the sudden dislocation reaches a limit value after about 10 times the Maxwell time. The expressions obtained here provide tools for the study of viscoelastic relaxation of lithosphere associated with seismic and volcanic phenomena.  相似文献   

16.
Summary. The combined effects of topography, geology and cavities upon the measurements of tidal strains are considered. A theoretical model is proposed in which the topography and geology are modelled with finite elements, and the cavity (assumed to be elliptical) modelled using the analytical theory. The three effects are then superimposed to form a total model. Previous experimental results obtained for the solid tidal strain in Eastern Australia (Blair & Sydenham) are compared with the present theoretical model and reasonable agreement is found assuming values of the Love numbers for the Gutenberg—Bullen A earth model in which h = 0.61 and l = 0.08 (Farrell). Further experimental results are presented for two strain meters, only one of which is not significantly influenced by the cavity. The relative difference, in harmonic content between the recordings of both strain meters is compared with that predicted by the theoretical model.  相似文献   

17.
Summary. The analytical wedge-shaped model of tidal propagation with friction described in an earlier paper which has complex Bessel function solutions, has been applied to the Bristol Channel with the introduction of a power-generating barrier. An analytical solution is possible for a linear flow condition at the barrier, assuming time variation at a single dominant tidal frequency, which requires symmetrical lunar operation of the barrage. Having obtained an analytical expression for the available power, the flow condition at the barrier is optimized to maximize the available power. If a phase lag is introduced between the water head and the flow at the barrier, significant increases in power are attainable. Variation of the upper end boundary condition indicates that closing off the upper Severn Estuary to tidal propagation would enable more power to be extracted at the barrage. Modification of the mouth boundary condition to take into account the response of the external sea to variations of flow across the mouth indicates a small reduction in available power. The model is intended as a simple indicator of the overall dynamics, rather than a prediction of the detailed response to the introduction of a barrier.  相似文献   

18.
Summary. An analytical model of one-dimensional long wave propagation is developed for a wedge-shaped estuary, with bottom friction included in the momentum equation. The model is applied to the M2 tidal propagation in the Bristol Channel. It appears to represent the amplitude and phase of both elevation and velocity better than the earlier models of Taylor and Bennett. Estimates of energy flux into the estuary are seen to depend critically on the boundary conditions chosen to tune the model. Conditions at Spring and Neap tides are also reproduced by the analytical solution, and the response of the tides to the introduction of a solid barrier at different location is evaluated using the model.  相似文献   

19.
The post-seismic response of a viscoelastic Earth to a seismic dislocation can be computed analytically within the framework of normal-modes, based on the application of propagator methods. This technique, widely documented in the literature, suffers from several shortcomings; the main drawback is related to the numerical solution of the secular equation, whose degree increases linearly with the number of viscoelastic layers so that only coarse-layered models are practically solvable. Recently, a viable alternative to the standard normal-mode approach, based on the Post–Widder Laplace inversion formula, has been proposed in the realm of postglacial rebound models. The main advantage of this method is to bypass the explicit solution of the secular equation, while retaining the analytical structure of the propagator formalism. At the same time, the numerical computation is much simplified so that additional features such as linear non-Maxwell rheologies can be simply implemented. In this work, for the first time, we apply the Post–Widder Laplace inversion formula to a post-seismic rebound model. We test the method against the standard normal-mode solution and we perform various benchmarks aimed to tune the algorithm and to optimize computation performance while ensuring the stability of the solution. As an application, we address the issue of finding the minimum number of layers with distinct elastic properties needed to accurately describe the post-seismic relaxation of a realistic Earth model. Finally, we demonstrate the potentialities of our code by modelling the post-seismic relaxation after the 2004 Sumatra–Andaman earthquake comparing results based upon Maxwell and Burgers rheologies.  相似文献   

20.
We investigated time dependent piezomagnetic fields due to volcanic sources embedded in a viscoelastic, homogeneous half-space. Especially in volcanic areas, the presence of inhomogeneous materials and high temperatures produce a lower effective viscosity of the Earth's crust that calls for considering anelastic properties of the medium. Piezomagnetic properties are carried by grains of titano-magnetite, which occupy only a small fraction of ordinary rock volume and are supposed to be elastic, while the non-magnetic surrounding matrix is assumed to be viscoelastic. From all the possible rheological models, we investigated two cases in which the bulk modulus is purely elastic and the shear modulus relaxes as: (i) a Maxwell solid and (ii) a standard linear solid (SLS). We applied the Correspondence Principle to the analytical elastic solutions for pressurized spherical sources and dislocation sources in order to determine the time dependent piezomagnetic fields in a viscoelastic medium. The piezomagnetic field completely vanishes after the relaxation process for a Maxwell rheology, whereas it is found to decrease over time and reach some finite offset value for a SLS rheology. These different behaviours provide helpful hints in understanding the temporal evolution of piezomagnetic anomalies in volcanic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号