首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rainfall-induced shallow landslide is a major hazard in mountainous terrain, but a time-space based approach is still an unsettled issue for mapping rainfall-induced shallow landslide hazards. Rain induces a rise of the groundwater level and an increase in pore water pressure that results in slope failures. In this study, an integrated infinite slope analysis model has been developed to evaluate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Based on this new integrated infinite slope analysis model, a time-space based approach has been implemented to map the distributed landslide hazard in a GIS (Geographic Information Systems) and to evaluate the shallow slope failure induced by a particular rainfall event that accounts for the rainfall intensity and duration. The case study results in a comprehensive time-space landslide hazard map that illustrates the change of the safety factor and the depth of the wetting front over time.  相似文献   

2.
Investigation of groundwater level fluctuations in the north of Iran   总被引:3,自引:1,他引:2  
Groundwater is the main source of water supply for drinking and agriculture uses in Mazandaran province. In recent years, the rapid growth of population and the increased need for water and food has put its land and water resources under severe stress. The main objective of this study was to investigate the temporal trends in annual, seasonal and monthly groundwater level using the Mann–Kendall test and the Sen’s slope estimator in the area during 1985–2007. The results indicated a mix of negative and positive trends in the groundwater level series. However, the positive trends were much more than negative ones. The statistical tests detected a significant increasing trend in more than 28% of the wells. The stronger increasing trends were identified in the series in summer and spring compared with those in autumn and winter. Moreover, the highest numbers of wells with significant positive trends occurred in August and July, respectively. The results of spatial analysis showed that the significant positive trends were concentrated in the central parts of Mazandaran province where paddy fields are the major water demanders. Analysis of climatic parameters revealed that decreasing trend of relative humidity and increasing trends of minimum and maximum air temperature can be attributed to groundwater level fluctuations in the study region. The research will be helpful for planners and policy makers to allocate groundwater resources in different sectors including agriculture, drinking and industry.  相似文献   

3.
降雨诱发浅层滑坡渐进破坏分析研究   总被引:1,自引:0,他引:1  
王正宇  樊辉 《贵州地质》2021,38(4):443-448
为分析降雨诱发浅层滑坡的演变过程。本文以湖南湘西古丈滑坡为例,基于Green-Ampt入渗模型,进行了降雨诱发浅层滑坡渐进破坏分析。研究结果表明:在强降雨作用下,滑坡的失稳破坏主要是由于前缘土体以及中前部土体的局部破坏,而逐渐发展为整体破坏。并且,受滑坡地形影响,地形平缓的区域虽然湿润锋下渗较快,土体抗剪强度较低,但由于土体饱和带的渗流作用较小,而重力提供垂直于滑面的分力较大,该部分稳定性较为良好,故湿润锋对于滑坡稳定性的影响还应该根据不同地形条件加以分析。渐进式滑坡破坏分析方法对滑坡的监测和防治具有重要的指导意义。  相似文献   

4.
孙萍萍  张茂省  江睿君  贾俊  刘峰  刘蒙蒙 《地质通报》2021,40(10):1617-1625
由降雨引发的浅层黄土滑坡灾害具有致灾性强、范围广、影响面积大等特点,是黄土高原地区危害严重的地质灾害类型。经典算法采用安全系数描述坡体稳定性,难以对坡体变形破坏的起始位置和实际失效面加以识别,限制了滑坡变形过程的描述和滑坡有效预测。以非饱和土吸应力理论为指导,基于Hydrus中的Slope Cube模块,建立黄土斜坡水-力耦合模型,结合黄土地区易滑坡形态统计数据,针对凸型、凹型、直线型3种坡型与30°、40°、50°三种坡度组合,计算了不同降雨条件下的坡体稳定性响应。结果表明,不同坡型的黄土斜坡对降雨条件具有明显的响应。相同降雨量、相同坡度条件下直线型坡发生浅表层破坏的可能性最低,凹型坡次之、凸型坡的稳定性最差。与之相对应的,相同条件下凸型坡失稳时间最短、凹型坡次之、直线型坡最长。本研究可为浅层滑坡的早期识别和预报提供支撑。  相似文献   

5.
强降雨引起的滑坡多以浅表堆积层滑移为主,易群发、危害性大,其地下水和土体内部含水率对降雨的水文响应机制复杂,难以精准开展稳定性预测。为研究降雨引起的滑坡水文响应对稳定性的影响,以四川省青川县后山里滑坡为例,开展现场降雨入渗监测、相关性分析和力学分析。通过连续3年的降雨量、土体水分和地下水位等监测,分析降雨入渗-土体体积含水率-地下水位的响应规律,得到降雨量与地下水位的相关关系,并基于无限斜坡稳定性计算公式构建基于降雨量和地下水位埋深的浅层滑坡稳定性预测模型。结果表明:(1)年内地下水呈周期性波动,分为缓慢下降期、快速下降期和快速上升期三个阶段,且降雨量与地下水埋深呈线性负相关,与水位升幅相关性不显著;(2)根据稳定性预测模型确定了该滑坡失稳的临界降雨阈值为81.8 mm/d,地下水埋深阈值为0.73 m。研究结果可为降雨诱发浅表堆积层滑坡的预警预报提供参考。  相似文献   

6.
Landslides are recurring phenomena causing damages to private property, public facilities, and human lives. The need for an affordable instrumentation that can be used to provide an early warning of slope instability to enable the evacuation of vulnerable people, and timely repair and maintenance of critical infrastructure is self-evident. A new emerging technique that correlates soil moisture changes and deformations in slope surface by means of elastic wave propagation in soil was developed. This approach quantifies elastic wave propagation as wave velocity. To verify its applicability, a series of fixed and varied slope model tests, as well as a large scale model test, were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation, and there was a distinct surge in the decrease rate of wave velocity with failure initiation, soil deformation was thus envisaged to have more significant effect on elastic wave velocity than water content. It is proposed that a warning be issued at switch of wave velocity decrease rate. Based on these observations, expected operation of the elastic wave velocity monitoring system for landslide prediction in the field application is presented. Consequently, we conclude that the elastic wave velocity monitoring technique has the potential to contribute to landslide prediction.  相似文献   

7.
Landslide susceptibility mapping is a vital tool for disaster management and planning development activities in mountainous terrains of tropical and subtropical environments. In this paper, the weights-of-evidence modelling was applied, within a geographical information system (GIS), to derive landslide susceptibility map of two small catchments of Shikoku, Japan. The objective of this paper is to evaluate the importance of weights-of-evidence modelling in the generation of landslide susceptibility maps in relatively small catchments having an area less than 4 sq km. For the study area in Moriyuki and Monnyu catchments, northeast Shikoku Island in west Japan, a data set was generated at scale 1:5,000. Relevant thematic maps representing various factors (e.g. slope, aspect, relief, flow accumulation, soil depth, soil type, land use and distance to road) that are related to landslide activity were generated using field data and GIS techniques. Both catchments have homogeneous geology and only consist of Cretaceous granitic rock. Thus, bedrock geology was not considered in data layering during GIS analysis. Success rates were also estimated to evaluate the accuracy of landslide susceptibility maps and the weights-of-evidence modelling was found useful in landslide susceptibility mapping of small catchments.  相似文献   

8.
This study analyzes the mechanism of the landslide event at Hsiaolin Village during Typhoon Morakot in 2009. This landslide event resulted in 400 deaths. The extremely high intensity and accumulative rainfall events may cause large-scale and complex landslide disasters. To study and understand a landslide event, a combination of field investigations and numerical models is used. The landslide area is determined by comparing topographic information from before and after the event. Physiographic parameters are determined from field investigations. These parameters are applied to a numerical model to simulate the landslide process. Due to the high intensity of the rainfall event, 1,675 mm during the 80 h before the landslide event, the water content of soil was rapidly increased causing a landslide to occur. According to the survivors, the total duration of the landslide run out was less than 3 min. Simulation results indicated that the total duration was about 150 s. After the landslide occurrence, the landslide mass separated into two parts by a spur at EL 590 in about 30 to 50 s. One part passed the spur in about 30 to 60 s. One part inundated the Hsiaolin Village and the other deposited at a local river channel and formed a landslide dam. The landslide dam had height between 50 and 60 m and length between 800 and 900 m. The simulation result shows that the proposed model can be used to evaluate the potential areas of landslides induced by extremely high intensity rainfall events.  相似文献   

9.
Implication of subsurface flow on rainfall-induced landslide: a case study   总被引:1,自引:1,他引:0  
Post-failure field investigation, instrumentation, monitoring, and numerical simulation were performed to give insights into the failure mechanism of a 13-h-delayed rainfall-induced landslide. A conceptual hydrological model was postulated based on the findings obtained from the investigation works. The results showed that subsurface flow was recharged by intense and prolonged rainfall through outcrops of fissured bedrock. The recharged water was mounded in the moderately weathered granite layer and caused an increase in hydraulic head. The groundwater seeped gradually upward into the overlying fill layer even after the rain has ceased, and eventually triggered the landslide when the water table was raised to a critical state. As most of the existing hydrologic-slope stability models were developed on the basis of soil-impermeable bedrock model, this could result in great discrepancies between the simulated results and the real hydrological responses of the slope. The findings from the present study highlighted the importance of considering subsurface flow and hydro-geological features in assessing the mechanism of rainfall-induced landslide.  相似文献   

10.
基于非饱和土流-固耦合理论和贝叶斯理论,建立了边坡的非饱和土流-固耦合随机反演模型,提出了基于马尔科夫链的多目标随机反分析方法,利用位移和孔隙水压力时变监测数据进行多目标和单目标随机反演,并对反演结果进行比较分析。结果表明,多目标随机反分析参数后验分布标准差较单目标随机反分析明显减小。单目标随机反分析只对本目标进行优化,对其他目标的预测误差较大。多目标随机反分析能同时对所有目标进行优化,反演结果对所有目标误差均较小,95%置信区间较单目标明显收窄,采用不同类型监测数据的多目标随机反分析所得结果更为可靠,预测更为准确。  相似文献   

11.
In hardrock terrain where seasonal streams are not perennial source of freshwater, increase in ground water exploitation has already resulted here in declining ground water levels and deteriorating its’ quality. The aquifer system has shown signs of depletion and quality contamination. Thus, to secure water for the future, water resource estimation and management has urgently become the need of the hour. In order to manage groundwater resources, it is vital to have a tool to predict the aquifer response for a given stress (abstraction and recharge). Artificial neural network (ANN) has surfaced as a proven and potential methodology to forecast the groundwater levels. In this paper, Feed-Forward Network based ANN model is used as a method to predict the groundwater levels. The models are trained with the inputs collected from field and then used as prediction tool for various scenarios of stress on aquifer. Such predictions help in developing better strategies for sustainable development of groundwater resources.  相似文献   

12.
13.
The Sanxicun landslide occurred on July 10, 2013, in Sanxicun Village, which is located in Dujiangyan City, Sichuan Province, China. It travelled up to 1200 m, destroyed 11 houses, and killed 166 people in the village. To explain how this landslide could travel such a large distance and cause such serious damage, this study used a thermo-poro-elastic approach coupled with the Savage–Hutter model to simulate the dynamic process of the Sanxicun landslide. The simulated results were compared with the actual results, as well as those of other researchers. It showed that the simulated results for the landslide profile and mass accumulation scope were basically consistent with the actual results. The simulated landslide runout was 1242 m, which was quite close to the actual value. The simulated maximum mass accumulation thickness was 16.4 m. The maximum velocity was 32.6 m/s, which was between those calculated by Yin et al. (J Eng Geol 22(2):309–318, 2014), Yin et al. (Landslide 13:9–23, 2016), and the various trends were found to be consistent. The temperature change and the pore water pressure evolution in the shear zone during sliding are also obtained by simulation. This study had recreated the Sanxicun landslide motion process from the view of thermo-poro-elastic coupling within the shear zone.  相似文献   

14.
Landslides - By utilizing the Green-Ampt infiltration equation and the infinite slope stability model, a method for analyzing shallow slope failures caused by rainfall is developed. With rainfall...  相似文献   

15.
Tran  T. V.  Alvioli  M.  Hoang  V. H. 《Natural Hazards》2022,110(3):1953-1968
Natural Hazards - The mechanical processes involved in movements of earth or rock masses under the effect of gravity—a landslide—may include several phases where the failure of one...  相似文献   

16.
田宏岭  乔建平  王萌  石莉莉 《地质通报》2009,28(8):1093-1097
降雨滑坡预警在世界上开展广泛,但对小区域的降雨滑坡风险进行预警尚不多见。以通用的风险定义为基础,首先对目标区域——四川省米易县的地质灾害进行调查,以典型滑坡进行反演,获得灾害的本底因素,按贡献率权重叠加法进行危险度分区;通过对承灾体的调查确定承灾对象,并将各承灾对象按密度由行政界限向1km×1km的网格单元转化后叠加形成易损度分区。二者相乘完成风险分区。对研究区域近5年逐日降雨数据与172条地质灾害记录进行分析,按前期日降雨量模型得到降雨阈值,根据滑坡空间概率和降雨引发滑坡的时间概率叠加的结果,得到研究区域的降雨滑坡概率,对照风险分区,完成风险预警。  相似文献   

17.
Groundwater irrigation is the most predominant method used across India and about 50% of the total irrigated area is dependent on it. The state of Haryana has witnessed a spectacular increase in agricultural production in the last few decades, and is largely dependent on groundwater for irrigation. Groundwater mining for irrigation has become a reality in the state over the years as the number of tube wells has increased from 0.02 million in 1966 to 0.73 million in 2012, showing alarming signs of over-exploitation. The impact of increased groundwater irrigation on groundwater levels has not been studied both spatially and temporally. Therefore, this study has been undertaken to investigate the groundwater level fluctuations in the state using geographical information system (GIS) from the groundwater level data of 893 observation wells obtained from Groundwater Cell, Department of Agriculture, Government of Haryana, Panchkula, for the period 2004-12. Many researchers have applied GIS to reveal the spatial and temporal structure of groundwater level fluctuation and as a management and decision tool. The analysis of results indicated a mix of negative and positive trends in the groundwater levels. However, the negative trends were much more pronounced than positive ones. Groundwater level in the state ranged between 0.16 to 65.97 m from the ground surface and per cent area with groundwater level depth more than 10 meter (critical category) was about 56% in 2004 and has increased to 64% by 2012. The average annual decline in groundwater level was observed to be above 32 cm/year, with the strongest decline (108.9 cm/year) in Kurukshetra district.  相似文献   

18.
田宏岭  乔建平  王萌  石莉莉 《地质通报》2009,28(08):1093-1097
降雨滑坡预警在世界上开展广泛,但对小区域的降雨滑坡风险进行预警尚不多见。以通用的风险定义为基础,首先对目标区域——四川省米易县的地质灾害进行调查,以典型滑坡进行反演,获得灾害的本底因素,按贡献率权重叠加法进行危险度分区;通过对承灾体的调查确定承灾对象,并将各承灾对象按密度由行政界限向1km×1km的网格单元转化后叠加形成易损度分区。二者相乘完成风险分区。对研究区域近5年逐日降雨数据与172条地质灾害记录进行分析,按前期日降雨量模型得到降雨阈值,根据滑坡空间概率和降雨引发滑坡的时间概率叠加的结果,得到研究区域的降雨滑坡概率,对照风险分区,完成风险预警。  相似文献   

19.
20.
Spectral methods and 2 years of daily data were used to estimate the phase lag between precipitation and groundwater-level response, and two decades of quarterly data were used to analyze the interaction between precipitation, lake levels and groundwater in the Trout Lake watershed located in Vilas County, Wisconsin, USA. The phase-lag function between precipitation and groundwater response is used to estimate recharge travel time. The recharge travel time and precipitation–groundwater–lake interactions have been traditionally studied using time-domain methods such as physically-based modeling. In this article, the innovative and efficient use of spectral methods is demonstrated to uncover the time scales that are significant in those interactions and estimate the recharge travel time, which is extracted from the underlying daily time series data. The results consistently show that precipitation leads groundwater-level response by up to 5 days in all cases. The effects of precipitation on lake and groundwater levels display strong similarities. Both the precipitation–lake level and the precipitation–groundwater level coherency functions show significant peaks at interannual and seasonal frequencies. The groundwater level–lake level coherency function shows a significant, broad peak at interannual frequencies, and no significant peak at seasonal frequencies, demonstrating the predominance of annual and lower frequencies in groundwater–lake interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号