首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Using Lagrangian methods, we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the 174°E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by the passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter–spring is responsible for eddy generation in the region.  相似文献   

2.
In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.  相似文献   

3.
Ocean circulation influences nearly all aspects of the marine ecosystem. This study describes the water circulation patterns on time scales from hours to years across Torres Strait and adjacent gulfs and seas, including the north of the Great Barrier Reef. The tridimensional circulation model incorporated realistic atmospheric and oceanographic forcing, including winds, waves, tides, and large-scale regional circulation taken from global model outputs. Simulations covered a hindcast period of 8 years (i.e. 01/03/1997–31/12/2004), allowing the tidal, seasonal, and interannual flow characteristics to be investigated. Results indicated that the most energetic current patterns in Torres Strait were strongly dominated by the barotropic tide and its spring-neap cycle. However, longer-term flow through the strait was mainly controlled by prevailing winds. A dominant westward drift developed in summer over the southeasterly trade winds season, which then weakened and reversed in winter over the northwesterly monsoon winds season. The seasonal flow through Torres Strait was strongly connected to the circulation in the north of the Great Barrier Reef, but showed little connectivity with the coastal circulation in the Gulf of Papua. Interannual variability in Torres Strait was highest during the monsoon period, reflecting variability in wind forcing including the timing of the monsoon. The characteristics of the circulation were also discussed in relation to fine sediment transport. Turbidity level in Torres Strait is expected to peak at the end of the monsoon, while it is likely to be at a low at the end of the trade season, eventually leading to a critically low bottom light level which constitutes a severe risk of seagrass dieback.  相似文献   

4.
The horizontal distribution of the Tsushima Current in the Tsushima/Korea Strait is assessed by a fine-resolution numerical experiment. The comparison of the model results with the observations along a section crossing the strait shows that the model represents relatively well, the general tendency of what was observed, such as the separation of the Tsushima Current into the western and eastern streams by the Tsushima Island. In summer, strong and relatively uniformly distributed surface currents enhance the formation of the wake downstream of the Tsushima Island. The axis of the countercurrent, embedded in the wake, is closer to the western stream. Anti-cyclonic eddies are shed near the downstream tip of the Tsushima Island and propagate along the boundary between the western stream and the wake. The exchange of water between the western stream and the wake takes place through the intermediation of these eddies. There is a net water supply from the western stream to the wake, which is then carried to the eastern stream by the countercurrent via the eastern coast of the Tsushima Island. In winter, currents, strongly barotropic, tend to have banded structures, especially in the region downstream of the western channel where isobaths converge in the downstream direction. The eddies found in this region in winter appear to be fundamentally different from those associated with the Tsushima Island wake. The necessary condition for barotropic instability is satisfied for the monthly mean currents in this region, suggesting that the currents are barotropically unstable in this region in winter.  相似文献   

5.
Using 1-year simulated data from extended Prince William Sound (PWS) nowcast/forecast system, both barotropic and baroclinic transports through two-strait, semi-enclosed PWS are examined. With major tidal constituents removed, hourly time series of volume transports through two straits are significantly correlated with net transport well balanced by the time rate of change of the PWS spatial-mean sea level. A transition frequency band occurs within the coherence function of hourly volume transports, which is characterized by a nearly 180° phase shift between low-frequency (>30 h) and high-frequency (<6 h) bands. The transition band is implicitly related to the horizontally divergent and horizontally non-divergent flows inside the Sound. Further investigation of monthly and annual mean volume transports indicates strong seasonal variability of flows through two straits. On the other hand, baroclinic transport through PWS demonstrates the transition between a two-layered flow structure during the wintertime and a well-defined three-layered structure, i.e., inflow in both the surface and bottom layer with outflow in the intermediate layer, in the remainder of the year. This three-layer exchange flow is determined to be mainly buoyancy-driven, geostrophic flow, and thus largely affected by seasonal variability of buoyancy over the shelf and PWS.  相似文献   

6.
Magnetovariational measurements have been made at 10 sites on the northern side of the Cook Strait, New Zealand. Single-station transfer functions have been calculated for the sites and indicate that the effect of induction in the shallow water of the Cook Strait is most important at around 1000 s period. At longer periods the effect of induced currents in the Pacific Ocean predominates.A two-dimensional electrical conductivity model including local conductivity structure has been shown to satisfy the measured responses at sites about 60–80 km distance from the strait. Closer to the strait the inductive process is strongly three-dimensional. A simple d.c. line current model of current flow has been shown to reproduce some of the features of the observed responses.Induction arrows indicate the existence of conductivity anomalies associated with a known lateral seismic boundary and with one of the two principal faults in the region.  相似文献   

7.
During September 2008 and February 2009, the NR/V Alliance extensively sampled the waters of the Sea of Marmara within the framework of the Turkish Straits System (TSS) experiment coordinated by the NATO Undersea Research Centre. The observational effort provided an opportunity to set up realistic numerical experiments for modeling the observed variability of the Marmara Sea upper layer circulation at mesoscale resolution over the entire basin during the trial period, complementing relevant features and forcing factors revealed by numerical model results with information acquired from in situ and remote sensing datasets. Numerical model solutions from realistic runs using the Regional Ocean Modeling System (ROMS) produce a general circulation in the Sea of Marmara that is consistent with previous knowledge of the circulation drawn from past hydrographic measurements, with a westward meandering current associated with a recurrent large anticyclone. Additional idealized numerical experiments illuminate the role various dynamics play in determining the Sea of Marmara circulation and pycnocline structure. Both the wind curl and the strait flows are found to strongly influence the strength and location of the main mesoscale features. Large displacements of the pycnocline depth were observed during the sea trials. These displacements can be interpreted as storm-driven upwelling/downwelling dynamics associated with northeasterly winds; however, lateral advection associated with flow from the Straits also played a role in some displacements.  相似文献   

8.
Large canyons incise the shelf break of the eastern Bering Sea to be preferred sites of the cross-shelf exchange. The mesoscale eddy activity is particularly strong near the shelf-break canyons. To study the mesoscale dynamics in the Navarin Canyon area of the Bering Sea, the time series of velocities derived from AVISO satellite altimetry between 1993 and 2015, drifters, Argo buoys, and ship-borne data are analyzed. We demonstrate that the strength of anticyclonic eddies along the shelf edge in spring and summer is determined by the wind stress in March–April. The increased southward wind stress in the central Bering Sea forced a supply of low-temperature and low-salinity outer shelf water to the deep basin and formation of the anticyclonic mesoscale circulation seaward of the Navarin Canyon. Enhanced northwestward advection of the Bering Slope Current water leads to increase in an ice-free area in March and April and increased bottom-layer temperature at the outer shelf. The strong (weak) northwestward advection of the eastern Bering Sea waters, determined by eastern winds in spring, creates favorable (unfavorable) conditions for the pollock abundance in the western Navarin Canyon area in summer.  相似文献   

9.
The circulation in the Straits of Florida is dominated by the throughflow of the Florida Current, as modified by tidal flows, responses to atmospheric cold front and extratropical cyclone (easterly wave and tropical cyclone) passages in winter (summer), and intrinsic mesoscale variability due to instabilities of the Florida Current front and jet system. Monthly meanders of the Florida Current, persistent oceanic fronts associated with the Florida Current’s baroclinic jet, and frontal eddies shed weekly by the Florida Current are the primary mesoscale features. A limited area model (Princeton Ocean Model: POM) is implemented to cover the Straits of Florida with a curvilinear grid that resolves the mesoscale structure, especially where the baroclinic flow is locked to steep topography in a 90 degree bend of the Straits. Florida Current cyclonic frontal eddies are spawned spontaneously, grow as they translate downstream, interact with shelf waters, and exhibit the same space-time attributes that characterize their observed counterparts, as evidenced by satellite imagery, shipboard synoptic mapping, coastal HF radar, and moored time series. Here, a deeper understanding is attempted for the frontal eddy kinematics and dynamics by examining, for example, their sensitivity to model parameter values, synoptic versus monthly atmospheric forcing, and other determinants of the flow. The mean flow shears are concentrated along the shelfbreak, where these frontal eddies are trapped, favoring the formation of the eddies by mean flow instabilities. In particular, it is found that the Florida Current frontal eddies exist independent of the wind-forcing considered (i.e., no winds, monthly winds, and synoptic (but not mesoscale) winds); however, they are modulated by the synoptic wind-forcing. Nevertheless, intriguingly, the frontal eddies have the same weekly time scale as the weather cycle.  相似文献   

10.
《Continental Shelf Research》2005,25(9):1023-1042
Four bottom-mounted current profilers were deployed across the Taiwan Strait from September 28 to December 14 of 1999 to monitor the current velocity when the northeast monsoon was strong. Results indicate both diurnal and semidiurnal tidal currents were primarily barotropic. The barotropic diurnal tide might be explained by a single Kelvin wave propagating along the Mainland China coast from north to south. However, the barotropic semidiurnal tide manifested as a more complicated form in the Taiwan Strait.The subtidal current generally fluctuated with the northeast winds. When the northeast wind was weak, the along- and cross-strait subtidal current flowed primarily against the wind and toward Taiwan, respectively. As the northeast wind intensified, the along-strait current flowed downwind, brought the cold China coastal water southward, and formed a baroclinic velocity front in the western portion of the Taiwan Strait. The Ekman effect forced the cross-strait current toward Mainland China in the upper water column and toward Taiwan in the lower water column, respectively. The along-strait volume transport, estimated from interpolated current velocity, varied from −5 to 2 Sv with a mean value of 0.12±0.33 Sv. Similar transport was also estimated from the sea level difference across the Taiwan Strait.Although the local wind played a dominant role for the fluctuations of current velocity and transport in the Taiwan Strait, it could be not the only important factor. The current or transport directed frequently against the wind could be related to the northward current, which was consistently observed in the Penghu Channel.  相似文献   

11.
The distribution of heat flow in the North Pacific Ocean has been examined, and a map of geothermal and geomagnetic fields for the Bering Sea as it is known today has been made. Reliable data are lacking regarding the time of origin for features of oceanic and continental genesis in the Bering Sea, which is an obstacle to the study of geodynamic processes in the North Pacific. Heat flow data were used to yield numerical estimates for the age of seafloor features in the Bering Sea: the Kamchatka Basin (21 Ma), Shirshov Ridge (95 Ma for the northern part and 33 Ma for the southern), the Aleutian Basin (70 Ma), Vitus Rise (44 Ma), Bowers Ridge (30 Ma), and Bowers Basin (40 Ma). These age estimates are corroborated by combined geological, geophysical, and plate kinematic data. A thermochemical model of global mantle convection has been developed in order to perform a numerical simulation of the thermal process involved in the generation of extended regional features in the North Pacific (the Emperor Fracture Zone, Chinook Trough, etc.). The modeling suggests a plume-tectonic origin for these features, yielding the optimal model for the tectonic evolution of the North Pacific. An integrated geological and geothermal analysis leads to the conclusion that the northern and southern parts of the Shirshov Ridge are different, not only in geologic age, but also in tectonic structure. The northern part is of imbricated-thrust terrane origin, while the southern part is of ensimatic island-arc origin, similar to that of Bowers Ridge. The seafloor of the Aleutian Basin is an outlier of the Upper Cretaceous Kula plate where, in the Vitus Rise area, backarc spreading processes originated during Eocene time. The terminating phase of activity in the Bering Sea began about 21 Ma by spreading in the older seafloor of the Kamchatka Basin. We developed plate-tectonic reconstructions of evolution for the North Pacific for the times 21, 33, 40, and 70 Ma in the hotspot system based on age estimates for the seafloor features derived from heat flow data and modeling of the thermal generation of regional faults, as well as on an analysis of geomagnetic, tectonic, and geological data.  相似文献   

12.
Abstract

Steady currents develop in oceanic turbulence above topography even in the absence of steady forcing. Mesoscale steady currents are correlated with mesoscale topography with anticyclonic eddies above topographic bumps, and large scale westward flows develop when β is non-zero. The relationship between those two kinds of steady currents, as well as their dependence on various parameters, is studied using a barotropic quasi-geostrophic channel model. The percentage of steady energy is found to depend on the forcing, friction and topography in a non-monotonic fashion. For example, the percentage of steady currents grows with the energy level in the linear regime (low energies) and decreases when the energy level increases in the nonlinear regime (high energies). Mesoscale steady currents are the energy source for the steady westward flow U, and therefore U is the maximum when large scale and mesoscale currents are of the same order of magnitude. This happens when the ratio S of the large scale slope βH/f 0 and the mesoscale rms topographic slope α is of order one. U decreases for both small and large values of S.  相似文献   

13.
Abstract

Laboratory experiments and analysis of shallow water equations in a rotating fluid show that channel flow is governed by the ratio of the width of the channel to the Rossby radius of deformation R= √[g&Delta;ρHf 2]. Flows through narrow ocean openings exhibit blocking and clear evidence of hydraulic control. These imply that formulae can be derived for width, volume flux, and velocity scales of the currents. A new version of the constant potential vorticity problem is solved, and it is shown to predict volume flux within 22% of the zero potential vorticity results. Next a systematic method of predicting volume flux through ocean passages is described. Some examples are given from the Denmark Straits overflow and the flow of Antarctic Bottom Water into the western Atlantic Ocean. Two-layer flows and counter-flows with rotation in a narrow passage, the so-called lock exchange flow problem, duplicate flows at a number of important straits and openings to bays. A potential vorticity formulation is reviewed. The flows in the mouths of various bays such as Funka Bay in Hokkaido, Japan, Spencer Gulf in South Australia, and Chesapeake Bay in the United States has R < width of the mouth, and the two currents are separated by a front. The width of the front and the density difference can be predicted with good results.  相似文献   

14.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

15.
Ivanov  V. V.  Luk'yanov  S. V.  Pnyushkov  A. V. 《Water Resources》2001,28(5):523-527
The problems of flow dynamics in a near-island zone of a shallow channel is considered using as an example the Bjerkezund Strait (eastern Gulf of Finland). Preliminary results of field studies and the results of numerical modeling of water circulation in the strait are given.  相似文献   

16.
Two prognostic experiments taking into account real atmospheric forcing for 2006 and 2011 were carried out based on the eddy-resolving numerical model with a horizontal resolution of 1.6 km for the Black Sea. The main dynamic features such as the Rim Current, the Sevastopol, and Batumi anticyclones are reproduced in both experiments. The model results are confirmed via observation data. We accomplished the analysis of simulated circulation and energetics. The results demonstrate that both the vertical viscosity and vertical diffusion along with the energy inflow from the wind have been the main contributors to the annual and seasonal budgets of kinetic and potential energies of the Black Sea circulation. It is shown that two regimes of the Black Sea general circulation are implemented depending on a magnitude of wind contribution to the kinetic energy in winter. Intensive mesoscale eddy formation was observed along the Anatolian, Caucasian, and Crimean coasts. The analysis of the Black Sea circulation and eddy energetics allowed us to conclude that the generation and development of the mesoscale coastal eddies is associated with the barotropic instability in case of intensive coastal currents and is associated with both the barotropic and baroclinic instability in case of weak coastal currents.  相似文献   

17.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

18.
The Bransfield Strait is one the best-known areas of Antarctica’s oceanic surroundings. In spite of this, the study of the mesoscale variability of its local circulation has been addressed only recently.This paper focuses on the mesoscale structure of local physical oceanographic conditions in the Bransfield Strait during the Austral summer as derived from the BIOANTAR 93 cruise and auxiliary remote sensing data. Moreover, data recovered from moored current meters allow identification of transient mesoscale phenomena.  相似文献   

19.
A new circulation model of the western North Pacific Ocean based on the parallelized version of the Princeton Ocean Model and incorporating the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme has been developed. The new model assimilates satellite data and is tested for the period January 1 to April 3, 2012 initialized from a 24-year simulation to estimate the ocean state focusing in the South China Sea (SCS). Model results are compared against estimates based on the optimum interpolation (OI) assimilation scheme and are validated against independent Argo float and transport data to assess model skills. LETKF provides improved estimates of the western North Pacific Ocean state including transports through various straits in the SCS. In the Luzon Strait, the model confirms, for the first time, the three-layer transport structure previously deduced in the literature from sparse observations: westward in the upper and lower layers and eastward in the middle layer. This structure is shown to be robust, and the related dynamics are analyzed using the results of a long-term (18 years) unassimilated North Pacific Ocean model. Potential vorticity and mass conservations suggest a basin-wide cyclonic circulation in the upper layer of the SCS (z?>??570 m), an anticyclonic circulation in the middle layer (?570 m?≥?z?>??2,000 m), and, in the abyssal basin (<?2,000 m), the circulation is cyclonic in the north and anticyclonic in the south. The cyclone–anticyclone abyssal circulation is confirmed and explained using a deep-layer reduced-gravity model as being caused by overflow over the deep sill of the Luzon Strait, coupled with intense, localized upwelling west of the strait.  相似文献   

20.
渤海海峡是连接中国东部山东半岛和辽东半岛的重要途径,其跨海通道的地壳稳定性研究受到高度关注.本文利用地震层析成像方法重建三维P波速度模型,揭示了渤海海峡及周边区域地壳和上地幔的构造特征.结果表明,渤海海峡的速度结构存在明显的非均匀性,海峡北部地壳速度较高,结构较为完整,断层活动不明显,与现今较弱的地震活动相吻合,但是地壳底部存在低速薄层,它有可能成为地壳和上地幔之间的滑脱带,需要开展进一步的研究加以确认.相比之下,海峡南部地壳速度偏低,附近区域地震活动频繁,与张家口—蓬莱断裂带通过于此有着密切的联系,该断裂持续不断的地震活动对海峡南部的地壳结构产生了较大的影响.在渤海南部,郯庐断裂带东、西两侧的地壳结构明显不同,西侧速度偏高,东侧至渤海海峡速度偏低,这一特征可能与此地区广泛发育的断层和地震活动有关.另外,受华北克拉通破坏及地幔上涌的影响,渤海地区地壳深部和上地幔速度偏低,郯庐断裂带及渤海海峡附近显示出深部热流的活动迹象,反映了岩石圈减薄和软流圈的局部抬升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号