首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
分析了1991年3月7日太阳东北边缘一个拱桥状爆发日珥上升、下降和半径膨胀的运动情况。该日珥的上升阶段和下降的开始阶段高度随时间的变化比较迅速,而且基本是线性的变化,但在下降的结束阶段则比较缓慢,也基本是线性的变化。它的下降运动不仅受到重力作用自由下落,而且还受到不均匀的大气阻力,磁场等力的共同作用而下落。而速度,喷射出以后总的在逐渐减弱,上升阶段减弱较快。下降阶段初期有一次跳跃式的变化,先迅速减弱,然后又很快增加,在下降后期速度减弱较慢。日珥到达最大高度的时间比日珥半径膨胀到达最大尺度的时间早4min左右。上升下降速度最大时半径膨胀速度最小,而上升下降速度最小时半径膨胀的速度最大。  相似文献   

2.
1991年3月5日的喷泉状爆发日珥及视向速度分布   总被引:2,自引:3,他引:2  
本文介绍了1991年3月5日一个与3N级光学耀斑伴生的喷泉状爆发日珥。用Hα线观测从开始到结束整个过程共持续约50分钟时间,日珥的最大投影高度15.9公公里,视向速度分布表明,日珥主要以较大的速度向着观测者的运动,最大速度每秒120公里。  相似文献   

3.
统计分析了云南天文台在22周峰年期间观测到的米波Ⅲ型射电爆发与光学活动的关系,发现在230~300MHz频率范围的米波Ⅲ型爆发与Hα耀斑的关系是密切的,Ⅲ型爆发的产生与双极磁结构和复杂型黑子活动区也密切相关。并对统计结果作了讨论。  相似文献   

4.
在排除了由非孤立耀斑过程所引起的,可能有激波相互作用的事件之后,本文指出了耀斑X射线(1-8)辐射的一个特征量与相应的行星际激波渡越速度VT的关系.该关系是由Eselevich于1990年首次获得的.本工作还得到了发生于活动区之外的爆发日珥的尺度与相关的激波的渡越速度之间的关系.  相似文献   

5.
本文介绍了1991年3月5日一个与3N级光学耀斑伴生的喷泉状爆发日珥。用Hα线观测从开始到结束整个过程共持续约50分钟时间,日珥的最大投影高度15.9万公里,视向速度分布表明,日珥主要以较大的速度向着观测者的运动,最大速度每秒120公里。  相似文献   

6.
利用色球Ha单色像、TRACE和SOHO/EITEUV单色像、SOH0/LASCO白光日冕观测及SOH0/MDI光球磁图,对2003年8月25日日面AR0442边界上2个暗条爆发的不同动力学行为及与之相关的耀斑、耀斑后环和CME等现象进行了分析。主要结论如下:(1)2个暗条的激活态和爆发过程有明显不同:暗条F1先变粗变黑,出现明显分叉,然后表现为whiplike爆发;而暗条F2一部分先消失,其余部分出现水平的轴向运动,最后F2整体爆发。(2)2个暗条的爆发机制是不同的:F1的爆发可能与新浮磁流密切相关,而F2的爆发与F1爆发产生的双带耀斑的分离运动和相互作用密切相关。  相似文献   

7.
王霖  谢瑞祥  汪敏  许春  刘玉英 《天文学报》2004,45(4):389-401
利用太阳射电宽带频谱仪(0.7-7.6GHz)于2001年10月19日观测到的复杂太阳射电大爆发,呈现出许多有趣的特征,结合NoRH(Nobeyama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(EUV)波段的高空间分辨率成像观测资料,分析了该爆发的射电频谱特征和微波射电源的演化以及它们与复杂的EUV日冕环系统的关系,该爆发是一个双带大耀斑的射电表征.前一部分以宽带(从厘米到米波)爆发为主,机制是回旋同步辐射,所对应的是环足源的辐射;后一部分以窄带(分米到米波)分米波爆发为主,机制是等离子体辐射和回旋共振辐射的联合,对应的是环顶源的辐射。  相似文献   

8.
分析了国家天文台云南天文台射电频谱仪在230~300MHz、625~1500MHz、1000~2000MHz和2600~3800MHz记录到的11对具有双向漂移结构的Ⅲ型爆发.对双向Ⅲ型爆发的半功率持续时间、频率漂移率、偏振度等观测特征与普通Ⅲ型爆发作了比较,与Hα耀斑的关系也作了详细分析.得到这些事件的显著特征,并对双向Ⅲ型爆发作了定性解释.  相似文献   

9.
用"多云模型"光谱方法分析1991年3月5日喷泉状爆发日珥的Hα光谱观测资料,导出了该日珥视向速度的二维分布;通过速度场分析,我们探测到日珥喷射速度和旋转角速度随高度的分布,结果表明该日珥的蓝移速度占绝对优势,速度变化范围为8~110km/s,速度分布不均衡、不对称,日珥中部和底部速度较大、顶部速度较小;日珥南边缘的速度梯度比北边缘的更大;日珥的喷射除表现为上升运动外还显示出向着观测者的、平均速度约为50km/s的视向运动;该日珥的旋转角速度约为7×10-4rad/s,两者随高度的变化显示出相反的特征。  相似文献   

10.
根据 1 984年 5月 5日土墩日珥D3线的拟合结果 ,本文分析了该土墩日珥的物理特性。结果发现 ,形成活动边缘的物质呈间歇性抛射 ,抛射物质的密度、温度在观测前期有显著变化 ,湍流速度异常之大 ,达 30km/s。土墩日珥的物理特性较一般 ,其D3线可用微观湍流 3~ 8km/s和低温 50 0 0~ 80 0 0K解释。  相似文献   

11.
A 2D velocity field of the eruptive prominence (EP) of 1991 March 5 is obtained from its spectral data observed at the Yunnan Observatory and the velocity distributions along the entrance slit are derived for different observing frames. Under the assumption that matter in the EP undergoes axial, radial and possible rotational motions, we construct a theoretical velocity distribution of the EP along the entrance slit, to derive, by fitting, the angular velocity of rotation w and the other three parameters (axial velocityυ0, radial velocityυr and the angle between the EP plane and the line of sightφ). We found: an averaged angular velocityωof 3.0 f6 10-3 arc s-1 and the variation ofωwith the height above the solar limb. As the EP rises, the matter within it in fact moves along a spiral path around its axis. The spiral motion may be explained by the theory of plasma 'double pole diffusion' (DPD) caused by a sharp density gradient between the eruptive prominence and the surrounding corona. A theoretical angular velocityω' is estimated based on the DPD and basically coincides withωobtained from the optimal velocity fitting.  相似文献   

12.
On 27 June 2012, an eruptive solar prominence was observed in the extreme ultraviolet (EUV) and radio wavebands. At the Aalto University Metsähovi Radio Observatory (MRO) it was observed at 37 GHz. It was the first time that the MRO followed a radio prominence with dense sampling in the millimetre wavelengths. This prompted us to study the connection of the 37 GHz event with other wavelength domains. At 37 GHz, the prominence was tracked to a height of around \(1.6~\mathrm{R}_{\odot}\), at which the loop structure collapsed. The average velocity of the radio prominence was \(55 \pm 6~\mbox{km}\,\mbox{s}^{-1}\). The brightness temperature of the prominence varied between \(800 \pm 100\) K and \(3200 \pm 100\) K. We compared our data with the Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument’s 304 Å EUV data, and found that the prominence behaves very similarly in both wavelengths. The EUV data also reveal flaring activity nearby the prominence. We present a scenario in which this flare works as a trigger that causes the prominence to move from a stable stage to an acceleration stage.  相似文献   

13.
Karlický  Marian  Kotrč  Pavel  Kupryakov  Yurij A. 《Solar physics》2001,199(1):145-155
Large Doppler velocities with unique, almost regular elliptical features were observed in the H spectra of the May 15, 2000 eruptive prominence. These features were interpreted in the frame of axially symmetric models of the eruptive prominence. The rotational (7–60 km s–1), expansion (30–44 km s–1), axial (3–19 km s–1), and global (66–160 km s–1) prominence plasma velocities were derived. The plasma velocity patterns were compared with the observed helical structures of the H prominence. The velocities of selected H blobs in the image plane were determined. The axially symmetric detwisting process of the magnetic flux rope of the eruptive prominence was recognized.  相似文献   

14.
We have observed an eruptive prominence at the east solar limb on 25 January 1991 which started earlier than 0623 UT and was associated with a limb flare (S16 E90) of class 1B/ X10.0. We have recorded a huge mass ejection in the corona by the limb flare associated eruptive prominence. The eruptive prominence ejected a part of the loop in the corona with maximum speed of about 1280 km/sec. The ejected material attain height upto 150,000 km in the corona and finally faded/disappeared in the corona. During the ascending phase of the prominence material in the corona there was a unscrewing of the loop system associated with the eruptive prominence. The type II, III, and IV radio bursts were also reported by a number of Radio Observatories during observation of the eruptive prominence. The high flux of sudden ionospheric disturbances and the solar radio emissions on fixed frequencies (245–80000 MHz) were also recorded. The eruptive prominence associated with limb flare also shows increased proton flux (>10 MeV) during its occurence. The flare was classified as X10.0 flare. In this paper we have analysed the observed data and compared it with the theoretical model of the solar flare.On leave from his original Institute  相似文献   

15.
Karlický  Marian  Kotrč  Pavel  Kupryakov  Yurij A. 《Solar physics》2002,211(1-2):231-240
Using TRACE 171 Å image observations and H spectra and images observed at the Ondejov Observatory, the October 1, 2001, eruptive prominence is studied. The evolution of this prominence is described and velocities of specific parts of the prominence are determined. It was found that, after the rising phase of the cold loop-like prominence, its upper part expanded and below this expanding part, around one of its legs a `ring' structure, visible in the TRACE images, was formed. Then, at the same place, a tearing of the prominence leg was recognized. Simultaneous spectral observations of this structure reveal a very broad H line, which indicates strong turbulent motion at these positions. These processes were accompanied by an expanding H envelope. Due to the similarity of the observed `ring' and tearing structures with those modeled by Lau and Finn (1996), the prominence leg tearing is interpreted as a reconnection process between two parallel magnetic ropes having parallel electric currents, but anti-parallel axial magnetic fields.  相似文献   

16.
Data from the STEREO (Solar Terrestrial Relations Observatory) mission are intensively used for 3D reconstruction of solar coronal structures. After the launch of the SDO (Solar Dynamic Observatory) satellite, its additional observations give the possibility to have a third eye for more accurate 3D reconstruction in the very low corona (<?1.5?R ??). With our reconstruction code MBSR (Multi-view B-spline Stereoscopic Reconstruction), we use three view directions (STEREO A, B, and SDO) to perform the 3D reconstruction and evolution of a prominence which triggered a CME on 1 August 2010. In the paper we present the reconstruction of this prominence from the moment it starts to erupt until it leaves the field of view of the coronagraph. We also determine the evolution of the leading edge of the CME. Based on the temporal evolution, we analyze some of its properties, such as velocity, acceleration, opening and rotation angles and evolution of the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号