首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constrain the origin and tectonic setting of the giant Duolong porphyry–epithermal Cu–Au deposit in the South Qiangtang Terrane of northern Tibet, based on new zircon U–Pb ages and Hf isotopic data, as well as whole-rock major and trace element data from poorly studied ore-associated intrusions in the Duolong area. The LA–ICP–MS zircon U–Pb dating indicates that the ore-associated rocks formed between 121 and 126 Ma. These ore-associated rocks are geochemically similar to low-K tholeiitic M-type granitoids and to mid- to high-K, calc-alkaline I-type granitoids. They have variable and predominantly positive zircon εHf(t) values (− 1.4 to + 15.6) and variable crustal model ages (TCDM(Hf); 176–1122 Ma). Taking into account previous data and the regional geology of the study area, we propose that the ore-associated rocks originated from fractional crystallization of mantle-derived mafic melts and magma mixing of mantle-derived mafic and hybrid lower crust-derived felsic melts, and the hybrid lower crust included a mix of juvenile and older continental material. The Duolong porphyry–epithermal Cu–Au deposit formed within an ‘ensialic forearc’ of an active continental margin as a result of the northwards subduction of the Bangong–Nujiang Ocean crust beneath the South Qiangtang Terrane.  相似文献   

2.
The Dongguashan skarn-porphyry Cu-Au deposit, located in the Tongling district of the Middle-Lower Yangtze River Valley metallogenic belt (MLYB), consists of skarn ore bodies in the upper part and porphyry ore bodies in the lower part, both of which are hosted in quartz diorite and quartz monzodiorite. Zircon U-Pb age and geochemical studies show that the quartz diorite of the Dongguashan intrusion formed at 140.3 ± 2.0 Ma (MSWD = 0.19) and belongs to the high potassium calc-alkaline series. It is enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), depleted in high field-strength elements (HFSE) and heavy rare earth elements (HREE), and has a slightly negative Eu anomaly. 176Hf/177Hf values of the rims of zircons show a variable range (0.282087–0.282391), corresponding with calculated εHf(t) values of − 10.72 to − 21.46. Plagioclases in the quartz diorite have unbalanced structure characterized by bright andesine and labradorite (An = 37.0–65.5) cores with higher contents of Fe and Sr and are corroded by dark oligoclase (An = 13.8–27.6) rim. Major elements, trace elements, Hf isotope, and the composition of plagioclases indicate that the parental magma of the Dongguashan intrusion was produced by the mixing of underplating mafic magma and felsic magma formed by remelting of Paleoproterozoic and Neoarchean crustal rocks, Neoproterozoic crust may also provide some material to the felsic magma. Mafic magma played a key role and made the parental magma rich in water, sulfur, metals (Cu, Au) and gave it a high oxygen fugacity. During its magmatic evolution, the parental magma underwent fractional crystallization of hornblende, apatite, sphene and other mafic minerals. Some quartz diorite and quartz monzodiorite samples that show adakitic signatures, may result from injection of mafic magma. Some inherited zircons of the quartz diorite in the Dongguashan intrusion gave ages of 2.40–2.50 Ga, 1.95–2.05 Ga and 0.74–0.81 Ga, coming from ultramafic, mafic and andesitic igneous rocks, and this indicates that there may have been three periods (2.4, 2.0, and 0.8 Ga) of magmatic activity in the Tongling district.  相似文献   

3.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

4.
This work presents the field setting, petrography, mineralogy and geochemistry of a gabbroic and peridotitic layered body that is lens-shaped and surrounded by gabbronorites, diorites, and metasedimentary migmatites. This body exposed at Jaboncillo Valley is one among several examples of mafic and ultramafic layered sequences in the Sierras Valle Fértil and La Huerta, which formed as part of the lower crust of the Ordovician Famatinian magmatic arc in central-western Argentina. The layered sequence grew at deep crustal levels (20–25 km) within a mafic lower crust. The base of the layered body was detached during the tectonic uplift of the Famatinian lower crust, whereas the roof of the layered body is exposed in the eastern zone. In the inferred roof, olivine-bearing rocks vanish, cumulate textures are less frequent, and the igneous sequence becomes dominated by massive or thinly banded gabbronorites. Mainly based on the petrographic relationships, the inferred order of crystallization in the gabbroic and peridotitic layered sequence is: (1) Cr–Al-spinel + olivine, (2) Cr–Al-spinel + olivine + clinopyroxene + magnetite, (3) Cr–Al-spinel + olivine + plagioclase + magnetite ± orthopyroxene, and (4) Al-spinel + orthopyroxene + amphibole. A strong linear negative correlation between olivine and plagioclase modal proportions combined with field, petrographic and geochemical observations are used to demonstrate that the physical separation of olivine and plagioclase results in rock diversity at scales of a few centimeters to tens of meters. However, the composition of olivine (Fo  0.81) and plagioclase (An > 94%) remains similar throughout the layered sequence. Spinels are restricted to olivine-bearing assemblages, and display chemical trends characteristic of spinels found in arc-related cumulates. Gabbroic and peridotitic layered rocks have trace element concentrations reflecting cumulates of early crystallizing minerals. The trace element patterns still retain the typical features of subduction-related arc magmatism, showing that the process of cumulate formation did not obscure the trace element signature of the parental magma. Using the composition of cumulus minerals and whole-rock chemical trends, we show that the parental magma was mafic (SiO2  48 wt.%) with Mg-number around 0.6, and hydrous. The oxygen fugacity (fO2) of the parental magma estimated between +0.8 and ?0.6 log fO2 units around the fayalite–magnetite–quartz (FMQ) buffer is also characteristic of primitive hydrous arc magmas. The initially high water content of the parental magma allowed amphibole to crystallize as an interstitial phase all over the crystallization evolution of the layered sequence. Amphibole crystallization in the inter-cumulus assemblage gives rise to the retention of many trace elements which would otherwise be incompatible with the mineral assemblage of mafic–ultramafic cumulates. This study shows that there exist strongly mafic and primitive magmas that are both generated and emplaced within the lower crustal levels of subduction-related magmatic arc. Our findings together with previous studies suggest that the Early Ordovician magmatic paleo-arc from central-northwestern Argentina cannot be regarded as a typical Andean-type tectono-magmatic setting.  相似文献   

5.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

6.
The Kuh-e Dom Pluton is located along the central northeastern margin of the Urumieh–Dokhtar Magmatic Arc, spanning a wide range of compositions from felsic rocks, including granite, granodiorite, and quartz monzonite, through to intermediate-mafic rocks comprising monzonite, monzodiorite, diorite, monzogabbro, and gabbro. The Urumieh–Dokhtar Magmatic Arc forms a distinct linear magmatic complex that is aligned parallel with the orogenic suture of the Zagros fold-thrust belt. Most samples display characteristics of metaluminous, high-K calc-alkaline, I-type granitoids. The initial isotopic signatures range from εNd (47 Ma) = −4.77 to −5.89 and 87Sr/86Sr(i) = 0.7069 to 0.7074 for felsic rocks and εNd (47 Ma) = −3.04 to −4.06 and 87Sr/86Sr(i) = 0.7063 to 0.7067 for intermediate to mafic rocks. This geochemical and isotopic evidence support a mixed origin for the Kuh-e Dom hybrid granitoid with a range of contributions of both the crust and mantle, most probably by the interaction between lower crust- and mantle-derived magmas. It is seem, the felsic rocks incorporate about 56–74% lower crust-derived magma and about 26–44% of the enriched mantle-derived mafic magma. In contrast, 66–84% of the enriched mantle-derived mafic magma incorporates 16–34% of lower crust-derived magma to generate the intermediate-mafic rocks. According to the differences in chemical composition, the felsic rocks contain a higher proportion of crustal material than the intermediate to mafic ones. Enrichment in LILEs and depletion in HFSEs with marked negative Nb, Ba, and Ti anomalies are consistent with subduction-related magmatism in an active continental margin arc environment. This suggestion is consistent with the interpretation of the Urumieh–Dokhtar Magmatic Arc as an active continental margin during subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent.  相似文献   

7.
The Gondwana (Early Permian to Early Cretaceous) basins of eastern India have been intruded by ultramafic–ultrapotassic (minette, lamproite and orangeite) and mafic (dolerite) rocks. The Salma dike is the most prominent among mafic intrusives in the Raniganj basin. This dike is tholeiitic in composition; MgO varies from 5.4 to 6.3% and the mg number from 54 to 59. In general, the major and trace element abundances are uniform both along and across the strike. There is geochemical and mineralogical evidence for fractional crystallization. The chondrite normalized REE pattern of the Salma dike (La/Ybn=3.5) is similar to that of Deccan dikes of the Son–Narmada rift zone, western India. 87Sr/86Sr varies from 0.70552 to 0.70671 suggesting assimilation of crustal material. Some trace element abundances (e.g. Ti, Zr, Y) of the Salma dike are comparable to Group I Rajmahal basalts. The 40Ar–39Ar whole rock age of 65 Ma for the Salma dike is less than the ca. 114 Ma age for the Rajmahal basalt, but is similar to the generally accepted age for Deccan volcanic rocks. Despite geographical proximity with the Rajmahal basalt, the Salma dike is believed to be related to late phase of Deccan volcanic activity.  相似文献   

8.
Whole rock major and trace element and Sr-, Nd- and Hf-isotope data, together with zircon U-Pb, Hf- and O-isotope data, are reported for the Nb-Ta ore bearing granites from the Lingshan pluton in the Southeastern China, in order to trace their petrogenesis and related Nb-Ta mineralization. The Lingshan pluton contains hornblende-bearing biotite granite in the core and biotite granite, albite granite and pegmatite at the rim. In addition, numerous mafic microgranular enclaves occur in the Lingshan granites. Zircon SIMS U-Pb dating gives consistent crystallization ages of ca. 132 Ma for the Lingshan granitoids and enclaves, consistent with the Nb-Ta mineralization age of ∼132 Ma, indicating that mafic and felsic magmatism and Nb-Ta mineralization are coeval. The biotite granites contain hornblende, and are metaluminous to weakly peraluminous, with high initial 87Sr/86Sr ratios of 0.7071–0.7219, negative εNd(t) value of −5.9 to −0.3, εHf(t) values of −3.63 to −0.32 for whole rocks, high δ18O values and negative εHf(t) values for zircons, and ancient Hf and Nd model ages of 1.41–0.95 Ga and 1.23–1.04 Ga, indicating that they are I-type granites and were derived from partial melting of ancient lower crustal materials. They have variable mineral components and geochemical features, corresponding extensive fractionation of hornblende, biotite and feldspar, with minor fractionation of apatite. Existence of mafic microgranular enclaves in the biotite granites suggests a magma mixing/mingling process for the origin of the Lingshan granitoids, and mantle-derived mafic magmas provided the heat for felsic magma generation. In contrast, the Nb-Ta mineralized albite granites and pegmatites have distinct mineral components and geochemical features, which show that they are highly-fractionated granites with extensive melt and F-rich fluid interaction in the generation of these rocks. The fluoride-rich fluids induce the enrichment in Nb and Ta in the highly evolved melts. Therefore, we conclude that the Nb-Ta mineralization is the result of hydrothermal process rather than crystal fractionation in the Lingshan pluton, which provides a case to identify magmatic and hydrothermal processes and evaluate their relative importance as ore-forming processes.  相似文献   

9.
《Gondwana Research》2014,25(3-4):1067-1079
The Mt Painter Province of northern South Australia is a site of exceptional suite of Mesoproterozoic high heat producing (HHP) granites and felsic volcanics. These rocks have very high heat production values of > 5 μW m 3. The HHP granites, including the Mt Neill, Box Bore, Terrapinna, Wattleowie and Yerila granites, form part of a broadly coeval association of mafic and felsic volcanic rocks that also include the Pepegoona Volcanics, lamprophyres and mafic–intermediate dykes. U–Pb LA-ICPMS zircon dating and Hf-in-zircon isotopic data are used to constrain both the timing and source of these magmatic rocks. U–Pb zircon LA-ICPMS crystallization ages range from ~ 1596 to 1521 Ma and imply a protracted sequence of magmatic events. Initial Hf isotopic compositions of these zircons from both dykes and felsic rocks have overlapping compositional ranges, with εHf values mainly from + 4 to − 2. These Hf values are significantly higher than contemporary crustal values which are likely to have been in the range − 4 to − 20. These data imply that the magmatic suite has both mantle and crustal sources.  相似文献   

10.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

11.
Small granitoids emplaced into the early Jurassic volcani-clastic succession in the Yusufeli area, northeastern Turkey, can be temporally and geochemically classified into two groups: early Jurassic low-K and late Jurassic high-K. 40Ar–39Ar hornblende analyses yielded 188.0 ± 4.3 Ma for the Dutlup?nar intrusion, dating the subduction related rifting in the region. It comprises metaluminous to weakly peraluminous (ASI = 0.94–1.11) granodiorite and, to a lesser extent, tonalite whose K2O-poor (< 2.04 wt.%) nature and weak negative Eu anomalies (Eu/Eu? = 0.9–0.7) preclude derivation by fractional crystallization from a K-rich melt. Sr, Nd and Pb isotopic data reveal derivation by partial melting from an already cooled tholeiitic basic rocks which had mantle-like isotope signature. The Sumbated intrusion formed in the late Jurassic (153.0 ± 3.4 Ma) and consists chiefly of metaluminous (ASI = 0.84–0.99) quartz monzodiorite. Medium to high-K2O, relatively high MgO and Sr contents, flat HREE patterns without prominent Eu anomalies, slightly positive εNd(t) values (+ 1.5 to + 2.5) and low ISr ratios (0.7046–0.7056) are consistent with an origin by dehydration melting of a juvenile source, above the garnet stability field, dominated by likely K-amphibole bearing calc-alkaline mafic rocks. Geochemical data show that fractional crystallization from a Sumbated-like quartz monzodioritic magma is the fundamental process responsible for the evolved compositional range of the Keçikaya intrusion. The geochemical and geochronological data presented here indicate that the late Jurassic magmatism occurred in a post-collisional setting. Slab-breakoff, which was followed by shortly after collision, seems to be the most plausible mechanism for the generation of medium to high-K calc-alkaline rocks of the Sumbated and the Keçikaya intrusions, indicating a switch in the geodynamic setting, e.g., from pre-collision to post-collision in the middle Jurassic in the eastern Pontides.  相似文献   

12.
The Han-Xing region is located in the south Taihang Mountains (TM) in the central part of the North China Craton, and is an important iron producing area. The iron deposits in this region are of skarn type, related to an Early Cretaceous high-Mg diorite complex, including gabbro diorite, hornblende diorite, diorite, diorite porphyrite, and monzonite. In this study we report the detailed mineral chemistry of the high-Mg diorites and skarn rocks. The olivine in the gabbro diorite shows chemical composition similar to that in mantle peridotite xenoliths. Clinopyroxene in the gabbro diorite is dominantly augite, with only minor diopside, whereas the clinopyroxenes in the diorite and monzonite are diopside. Amphiboles in the high-Mg diorites show compositional range from magnesiohornblende to magnesiohastingsite, with minor pargasite and tschermakite. Most plagioclase in the high-Mg diorite is andesine and oligoclase. The magnesio-biotite in gabbro diorites shows chemical characteristics of re-equilibrated primary biotites and those in calc-alkaline rocks. In the diorite and diorite porphyrite, plagioclase shows complex chemical zoning. Clinopyroxene and garnet in skarn rocks show varying FeO contents, the former containing low FeO (< 9 wt.%) and occurring as the major skarn mineral in large-scale iron deposits, and the latter within small-scale iron deposits with high FeO (mostly > 25 wt.%) content. We computed the pressure, temperature, oxygen fugacity and water contents based on the mineral chemistry of amphibole and biotite. Based on the results, the magma crystallization can be divided into two stages, one within the deep magma chamber, forming clinopyroxene, amphibole and plagioclase phenocrysts; the other after emplacement, forming the rim of phenocrysts and matrix minerals. The magma during the early stage shows high temperature (~ 900 °C–950 °C), pressure (~ 300 MPa–500 MPa), relatively high logfO2 (NNO–NNO + 2), and H2O content in melt (4%–8%). During the late stage, the magma temperature dropped to about 750 °C, and pressure came down to less than 100 MPa, with the logfO2 rising to NNO + 1–NNO + 2.The zoning of amphibole and plagioclase records the process of magma mixing and crystallization, with injection of mafic magma into the felsic magma chamber. The relatively high logfO2 and H2O content inhibited partitioning of iron into mafic minerals and favored concentration of Fe in the melt. Iron ore precipitation occurred when the magma was emplaced at shallow level, and was principally controlled by the chemical composition of carbonate wall rocks. The high logfO2, Fe3 + rich ore-forming fluid generated andradite and clinopyroxene when it reacted with limestone and dolomitic limestone respectively.  相似文献   

13.
The East-Ujimqin complex, located north of the Erenhot–Hegenshan fault, North China, is composed of mafic–ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing’an–Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U–Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic–ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic–ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U–Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2–14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9–12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic–ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic–ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280–276 Ma.  相似文献   

14.
The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair Valley area, in the northeastern part of Iraq within the Sanandaj–Sirjan Zone (SSZ) of the Zagros Orogenic Belt. The U–Pb zircon dating of the SG rocks has revealed a concordia age of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during the Middle Cretaceous. The whole-rock Rb–Sr isochron data shows an age of 52.4 ± 9.4 Ma (MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these rocks over the subduction zone in an active continental margin regime. The SG rocks are hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values of ?Nd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and isotope compositions show that the SG body originated from the metasomatic mantle without a major role for continental contamination. Our findings show that the granitoid bodies distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.  相似文献   

15.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

16.
The Maevatanana gold deposit in Madagascar is hosted by Archean metamorphic rocks in quartz–sulfide veins that are structurally controlled by NNW–SSE trending shear zones. Fluid inclusion data show that the trapping conditions in quartz range from 0.87 to 2.58 kbar at temperatures of 269–362 °C. Laser Raman spectroscopy confirms that these inclusions consist of CO2, SO2, and H2O. The δ34S values of the pyrites range from 1.7‰ to 3.6‰, with an average of 2.25‰, supporting a magmatic origin. Noble gases (He, Ne, Ar, Ke, Xe) are chemically inert, thus will not be involved in chemical reactions during geological processes. Also due to the low concentration of He in the atmosphere and the low solubility of He in aqueous fluids, the atmosphere-derived He is unlikely to significantly affect He abundances and isotopic ratios of crustal fluids, ensures that He production should have the typical crust 3He/4He ratios. The 3He/4He ratios of fluid inclusions in pyrite from the deposit range from 0.06 to 0.12 Ra, while the 40Ar/36Ar ratios range from 6631 to 11441. We infer that the ore-forming fluids could have been exsolved from a granitic magma. The oxygen and hydrogen isotope compositions of the ore-forming fluids (1.5‰  δ18OH2O  7.8‰; –72‰  δD  –117‰) indicate they were derived from a granitic magma. Four pyrite samples from the gold deposit yield a precise Re–Os isochron age of 534 ± 13 Ma. Given that the post-collisional granites in northern and central Madagascar were derived by melting of sub-continental lithospheric mantle and formed between 537 and 522 Ma, we can state that the gold metallogenesis was coeval with the crystallization age of these parental magmas. These data could be accounted for the formation of the Maevatanana gold deposit. First, the shear zones hosting the deposit formed around 2.5 Ga, when the Madagascan micro-continental blocks collided with other continental blocks, triggering large-scale tectono-magmatic activity and forming NNW–SSE trending shear zones. The gold mineralization at Maevatanana is coeval with the crystallization age of the Cambrian post-collisional A-type granitoid plutons in northern and central Madagascar, implying that this deposit is associated with extensional collapse of the East African Orogen. This extension in turn induced asthenospheric upwelling, melting of sub-continental lithospheric mantle. These magmas underplated the lower crust, generating voluminous granitic magmas by partial melting of the lower crust. The mixing magma during tectono-thermal reactivation of the East African Orogen produced large volumes of volatiles that extracted gold from the granitic magma and produced Au–S complexes (e.g., Au(HSO3)2−). The shear zones, which were then placed under extensional collapse of the East African Orogen in the Cambrian, formed favorable pathways for the magmatic ore-forming fluids. These fluids then precipitated gold-sulfides that form the Maevatanana gold deposit.  相似文献   

17.
The studied volcanic rocks are footwall and hanging wall dacites from the Murgul mine and the surrounding area. Moreover, the hanging wall dacites contain enclaves. Footwall dacite contains biotite, whereas hanging wall dacitic rocks contain hornblende as a ferromagnesian mineral. The enclaves in the hanging wall dacite have sizes that range from 1 cm to 20 cm and contain hornblende as a ferromagnesian mineral. The volcanic rocks show tholeiitic and transitional affinities. They are rich in large ion lithophile element and light rare earth element with pronounced depletion of high field strength elements. The chondrite-normalized rare earth element patterns (LaN/LuN = 1.47–5.12) show low to medium enrichment, which reveal that the rocks were obtained from similar sources in Murgul volcanic rocks. The initial 87Sr/86Sr values range from 0.70442 to 0.70525, and the initial 143Nd/144Nd values range from 0.512741 to 0.512770. The main solidification processes involved in the evolution of the volcanic rocks consist of fractional crystallization with minor amounts of crustal contamination and magma mixing. All geochemical data support that these rocks originated from andesitic magma, and that the parental magma of the rocks were probably derived from an enriched upper mantle, previously modified by subduction-induced metasomatism in a geodynamic setting.  相似文献   

18.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

19.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

20.
《Gondwana Research》2014,26(4):1445-1468
The continental crust of the North China Craton (NCC) is a major reservoir of mineral resources with imprints of secular changes in tectonics and metallogeny. The Jiaodong Peninsula, located in the eastern margin of the North China Craton (NCC), is currently one of the largest gold producers over the globe, and preserves the records of multiple magmatic and metamorphic events. Here we characterize the timing and tectonics of the major Mesozoic magmatism and the associated gold metallogeny in this region through a comprehensive U–Pb geochronological and Hf isotope investigation of zircons in a suite of granitoids, mafic magmatic enclaves, melanocratic dikes and melted basement rocks.The Linglong granite, hosting one of the major gold deposits in Jiaodong, shows emplacement ages between 150 and 160 Ma, and the dominantly negative εHf (t) values (− 34.0 to − 23.8) of zircons from this intrusion suggest magma derivation from recycled components in the Archean basement. The Guojialing granodiorite and its mafic magmatic enclaves show similar ages between 123 and 127 Ma, with negative εHf (t) values (− 19.3 to − 16.8), corresponding to crustal magma source. The melanocratic dikes, belonging to pre- and syn-mineralization stages, with U–Pb age range of 126 to 166 Ma display large variation in their zircon εHf (t) values (− 25.7 and 2.3) suggesting the involvement of both recycled crustal and juvenile mantle components. Zircons in the melted basement rocks with ages in the range of ca. 127–132 Ma also display both positive and negative εHf (t) values (− 44.6 and 9.8) indicating a mixture of recycled ancient crust and juvenile magmas. Our study shows that although the peak of gold metallogeny coincided with the tectonics associated with Pacific plate subduction which mobilized and concentrated the ores, the source materials of gold mineralization and magmatism had multiple origins including from the Precambrian basement rocks, Mesozoic granitoids and mantle-derived mafic magmas with extensive mixing of crustal, lithosphere mantle and asthenospheric components. A combination of delamination, mantle upwelling, subduction-related metasomatic enrichment and recycling of ancient components facilitated the gold metallogeny in this region. Our study provides a typical case of juvenile and recycled components in the formation and evolution of continental crust and associated mineral resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号