首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本实验开展了疣荔枝螺(Thais clavigera Kuster)室内全人工繁育技术研究;具体包括亲螺人工促熟蓄养、卵囊采集、孵化、幼虫培育、变态和采苗等技术研究,同时,还开展了后期面盘幼虫对不同附着基的喜好选择性实验,以及不同饵料和光照对幼虫附着的影响研究。研究表明:雌螺分批产卵,单个雌螺平均每次产出受精卵为61 750粒;在水温27~29℃时,面盘幼虫经过20 d左右的生长发育,壳长达到约600 μm,此时开始附着变态,由浮游生活转变为底栖生活;附着后10 d左右变态为稚螺。后期面盘幼虫对附着基的选择性实验表明,固着牡蛎苗的栉孔扇贝壳和附有底栖硅藻的波纹板,是稚螺理想的附着基。不同饵料和光照对幼虫附着影响实验结果表明:在附着变态期间,自然光照有利于幼虫附着变态;同时,连续投喂糠虾肉糜可显著提高幼虫变态率和稚螺成活率。本研究结果为今后疣荔枝螺产业化繁育提供了重要的理论和技术支持。  相似文献   

2.
大西洋浪蛤繁殖生物学研究   总被引:2,自引:2,他引:0  
于2002年1月至2003年1月 ,在浙江温州对引种养殖的大西洋浪蛤(Spisulasolidissima)的性腺发育、生殖周期、肥满度、胚胎发育、幼虫发育及变态等进行了研究。研究结果表明 ,大西洋浪蛤性腺发育过程分为增殖期、生长期、成熟期、排放期、休止期5个阶段。在浙南沿海的大西洋浪蛤繁殖期在4月下旬至6月上旬 (水温19.5~25℃ ) ,可大量产卵二次 ;肥满度最高出现在5月份,为10.37 % ,最低出现在2月份 ,为4.66 %。个体产卵量为14.1×104~111.1×104粒 ,卵沉性 ,卵径50~60μm ;受精卵在水温19.5~23℃ ,经16~20h孵化成D形幼虫 ;初孵D形幼虫平均大小为75μm×62μm ,浮游幼虫经12~13d培养进入壳顶后期 ,15~16d进入附着变态期 ,壳长为260~290μm ,发育变态为稚贝。  相似文献   

3.
毛嵌线螺的研究Ⅰ.繁殖及幼虫发生特征   总被引:7,自引:0,他引:7  
毛嵌线螺(Cymatium pileare)的繁殖过程包括交配、产卵、孵育及幼虫从卵囊中游出等4个阶段。交配一般在产卵前10~15d进行,产卵后母体并不离开卵群,而是持续静伏在卵群的开口上进行孵育,直至其中的幼虫离开卵囊。温度和盐度对毛嵌线螺受精卵的发育有重要影响,在22~30℃的适宜温度区域内,将受精卵孵育成能自由生活的晚期面盘幼虫需438日度左右的总积温。毛嵌线螺受精卵的发育与其他前鳃类腹足动物相似,包括卵裂、囊胚期、原肠期及面盘幼虫期4个阶段。  相似文献   

4.
对疣荔枝螺(Thais clavigera Kuster)早期发育进行了研究,记录了疣荔枝螺各个发育时期的特征和生长数据。研究表明,在温度27~28℃条件下,疣荔枝螺受精卵在卵囊内经过卵裂期、囊胚期、原肠期、膜内担轮幼虫期和膜内面盘又重启,最后出膜进入卵囊外浮游幼虫期,全程需要14 d。在卵囊外浮游幼虫平均每天生长16.35μm,经历25 d左右变态成为稚螺,随后一直营匍匐生活。本研究结果为疣荔枝螺的人工繁育提供了重要理论基础。  相似文献   

5.
研究了脉红螺(Rapana venosa(Valenciennes)在室内人工投喂条件下的亲螺交配、卵袋产出、孵化、幼虫培育、采苗。结果为:亲螺促熟培育的适宜饵料是四角蛤蜊,在人工促熟条件下每只雌螺产卵量44.57万粒,胚胎孵化率平均为87.4%;在育苗期间,幼虫前期密度为0.2个/mL,后期0.1个/mL,投喂金藻、小球藻、角毛藻,当平均壳高达到1200μm以上时,投放附有底栖硅藻的聚乙烯波纹板采苗效果最好。本文在稚螺培育中主要研究了脉红螺稚螺食性转换和变态过程中的适宜动物性饵料,以及不同处理方法的附着基对稚螺附着的影响,结果表明:经亲螺爬过和附有底栖硅藻的波纹板,附苗效果好;刚附着变态后稚螺除了投喂牡蛎肉糜外,定期向池内投放活的牡蛎受精卵,可以促进稚螺变态和食性顺利转化,成功培育出壳高1.0cm以上苗种。  相似文献   

6.
毛嵌线螺( Cymatium pileare)的繁殖过程包括交配、产卵、孵育及幼虫从卵囊中游出等4个阶段.交配一般在产卵前10~15d进行,产卵后母体并不离开卵群,而是持续静伏在卵群的开口上进行孵育,直至其中的幼虫离开卵囊.温度和盐度对毛嵌线螺受精卵的发育有重要影响,在22~30℃的适宜温度区域内,将受精卵孵育成能自由生活的晚期面盘幼虫需438日度左右的总积温.毛嵌线螺受精卵的发育与其他前鳃类腹足动物相似,包括卵裂、囊胚期、原肠期及面盘幼虫期4个阶段.  相似文献   

7.
砗蚝(Hippopus hippopus)的人工繁育   总被引:1,自引:0,他引:1  
于2016年4—9月开展了砗蚝(Hippopus hippopus)人工繁育技术研究。采用五羟色胺进行催产、促使配子排放;精卵分别收集,进行异体间受精以避免自交;受精卵经过30h孵化,选出600万D形幼虫进行培育。砗蚝的早期生活史与砗磲(Tridacna spp.)相似,经历前期面盘幼虫、中期面盘幼虫、后期面盘幼虫、足面盘幼虫、单水管稚贝、双水管稚贝、外套膜触手稚贝、幼贝等阶段。与砗磲不同的是,砗蚝怀卵量较少,但卵径较大,D型幼虫也较大,幼虫趋光性更强,壳长2.0mm以后外套膜不伸出壳缘外,幼贝贝壳形态也不同于砗磲。同砗磲幼虫一样,砗蚝幼虫需要构建虫黄藻系统之后,才能出现鳃、次生壳等,从而完成变态成为稚贝。砗蚝幼虫变态率较低,仅为1.4%。中间育成期间,丝状藻和锥形螺是稚贝培育的主要敌害,需及时清理才能确保稚幼贝正常生长发育。经过120d的精心饲育,培养出平均壳长6.3mm幼贝500余个。本研究为进一步开展砗蚝人工繁育、中间育成、增殖放流、资源修复及移植保育提供了参考。  相似文献   

8.
大竹蛏的繁殖生物学   总被引:2,自引:0,他引:2  
2005年1月至2007年12月,采用组织学和实验生态学方法对大竹蛏(Solen grandis Dunker)的性腺发育、生殖周期、肥满度、胚胎发育、幼虫发育及变态等进行了研究.结果表明,大竹蛏性腺发育过程分为增殖期、生长期、成熟期、排放期、休止期5个阶段;在浙南沿海大竹蛏繁殖期为4月下旬至5月中旬(水温21~24℃);肥满度最高出现在5月份,为31.2%;最低出现在2月份,为21.2%.大竹蛏卵径为85~95 μm;受精卵在水温22℃,经20~24 h孵化成D形幼虫;初孵D形幼虫平均大小为125 μm,浮游幼虫经5~6 d培养进入附着变态期,壳长为250 μm,发育变态为稚贝.  相似文献   

9.
方斑东风螺人工育苗试验   总被引:9,自引:0,他引:9  
2003年3月31日至8月31日,在水温25.0~30.0℃,盐度28.3~35.1,pH8.1~8.5时,在广东省湛江雷州市进行了方斑东风螺人工育苗试验,培育出壳高6~10mm幼螺300多万只。结果表明。投喂新鲜海鱼、蟹类、虾类,短时间阴干、流水刺激或流水培育可以诱导方斑东风螺亲螺交配产卵;幼虫培育密度以2.0~2.5万个/m^3为宜,幼虫培育期间投喂多种天然混合饵料,可以提高幼虫成活率,缩短幼虫浮游时间,提前变态;及时投放附着砂,有利于幼虫顺利变态;壳高5~10mm幼螺培育密度保持在1500个/m^2左右,每10~15d清洗一次附着砂,可加速幼螺的生长,提高幼螺成活率,有效防止病害的发生。  相似文献   

10.
方斑东风螺样品采自福建省南部诏安海域.其卵囊无色透明,叶片状,每个卵囊内有受精卵500~1 600个,卵径为280~308μm.方斑东风螺胚胎发育在卵囊内进行,第一次和第二次卵裂分别为经裂,分裂中有极叶出现.随后其卵裂以螺旋式不等裂方式进行,在胚胎的动物极形成帽状胚盘.其囊胚期胚体开始缓慢转动.在水温为29.0~29.5℃的条件下,产卵后60~63 h其成为早期面盘幼虫.此期以面盘、足、壳的出现为标志.中期面盘幼虫阶段包括囊内的面盘幼虫至出囊后且卵黄尚未消失的浮游幼虫初期阶段.出囊后的幼虫浮游1~2 d后,卵黄囊完全消失成为后期面盘幼虫,心脏搏动频率加快,足变大并伸长.在水温为27.5~28.5℃的条件下,经10~12 d的浮游,后期面盘幼虫转为底栖生活,随后面盘退化、萎缩并完成变态,营爬行生活,贝壳上出现棕褐色斑纹,成为稚螺.  相似文献   

11.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   

12.
海上大直径钢管桩打桩过程中,桩周土体受到强烈扰动而发生强度弱化,掌握桩周土体强度弱化规律对于准确预测打桩过程、保证工程安全具有重要意义。为研究土体强度弱化规律,开展了环剪试验模拟打桩对桩周土体的扰动,测试土体强度随剪切速率的变化规律,建立了描述土体强度弱化规律的拟合公式,引入到打桩分析软件中。研究结果表明:土体的强度折减程度不仅与土体本身的性质有关还受到土体的埋深和剪切速率的影响,埋深越深土体强度折减程度越低,剪切速率越高土体强度折减越高,在打桩分析中可采用这里推荐的线性折减方法来模拟不同深度处土体强度的折减规律。  相似文献   

13.
An acoustic inversion method using a wide-band signal and two near field receivers is proposed and applied to multiple layered seabed models including a manganese sediment. The inversion problem can be formulated into a probabilistic model comprised of signals, a forward model, and additive noise. The forward model simulates wide-band signals, such as chirp signals, and is chosen to be the source-waveletconvolution plane wave modeling method. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the possible numerical ranges for a priori uniform distribution is based. The genetic algorithm is applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L 2 norm of the difference between measured and modeled signals. Not only the marginal pdf but also its statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm.  相似文献   

14.
This article reviews information recently available from existing marine and coastal mining for responses to environmental issues affecting marine mining at different depths. It is particularly but not exclusively concerned with those issues affecting seabed biodiversity impact and recovery. Much information has been gathered in the past 10 years from shallow mining operations for construction aggregate, diamonds, and gold, from coastal mines discharging tailings to shallow and deep water, and from experimental deep mining tests. The responses to issues identified are summarized in a series of eight tables intended to facilitate site-specific consideration. Since impacts can spread widely in the surface mixing layer SML, and can affect the biologically productive euphotic zone, the main issues considered arise from the depth of mining relative to the SML of the sea. Where mining is below the SML, the issue is whether it is environmentally better to bring the extraction products to the surface vessel for processing (and waste discharge), or to process the extraction products as much as possible on the seabed. Responses to the issues need to be sitespecific, and dependent on adequate preoperational environmental impact and recovery prediction. For deep tailings disposal from a surface vessel, there are four important environmental unknowns: (1) the possible growth of "marine snow" (bacterial flocs) utilizing the enormous quantities of fine tailings particles (hundreds or thousands of metric tons per day) as nuclei for growth, (2) the possibility that local keystone plankton and nekton species may migrate diurnally down to and beyond the depth of deep discharge and hence be subjected to tailings impact at depth, (3) the burrow-up capability of deep benthos and their ability to survive high rates of tailings deposition, and (4) the pattern and rate of dispersion of a tailings density current through the deep water column from discharge point to seabed. Actions to obtain relevant information in general and site-specifically are suggested.  相似文献   

15.
Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m -2 day -1 . Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

16.
17.
The advanced piston corer (APC) has been used by the Ocean Drilling Program since 1985 for recovering soft sediments from the ocean floor. The pullout force measured on extracting the core barrel from the sediment is shown to correlate with the average shear strength of the sediment core measured in the ship's laboratory. A simple rule of thumb is derived relating the shear strength of the sediment to the pullout force. Multiple APC holes at individual sites allow the consistency of the pullout measurements to be assessed. The effects of different operational procedures during APC coring are also explored. Although generally applicable, the correlation between pullout force and laboratory measurements of shear strength breaks down for some APC holes, possibly because of the disturbance of some sediment types during the APC coring process. A better understanding of the physical process of APC coring, and its effect on the properties of the sediment both inside and immediately outside the core barrel, would indicate what confidence can be put on the measurement of pullout force as a way of evaluating the in situ shear strength of deep sea sediments.  相似文献   

18.
19.
Oedometer tests have been carried out on 70 undisturbed surficial clays (at approximately 250 mm below the mudline), mostly collected by free-fall corers from sites widely scattered throughout the deep-sea North Atlantic. Acoustic measurements were also made, initially on contiguous samples and ultimately on the same sample using a geophysically instrumented oedometer which also collected electrical resistivity data. Apart from those quiescent areas below the carbonate compensation depth, such as north of the West Indies where very fine clays exist, most of the samples are silty clays whose geotechnical-geophysical properties are dependent on the type of clay minerals present (and their ability to take in moisture), the sand-size fraction, and the quantity of carbonate present. Thus the pure clays have high compressibilities which decrease on the addition of coarse particles, while the converse is true for the acoustic parameters, these increasing with the sand fraction. Using the notion of the intrinsic compression line for all samples, and comparison to it of the measured compression curves, it is clear that, contrary to some previously held ideas, most deep-sea clays are normally consolidated; the addition of carbonate has the effect of creating an open, stronger sediment skeleton. Interestingly, where information is available, the variation with depth of a sample's acoustic velocity follows the void ratio pressure relationship of the compression curve. This allows the construction of an in-situ sediment compression curve using the in-situ geophysical observations.  相似文献   

20.
A set of 27 marine planktonic bacteria isolated from the polar regions was characterized by 16S rDNA sequencing and physiological and biochemical testing. More than half of these bacteria were positive for caseinase, gelatinase and 13-glucosidase, and could utilize glucose, maltose or malic acid as carbon source for cell growth. Twelve isolates expressed nitrate reduction activities. Except for one antarctic isolate BSwlO175 belonging to Actinobacteria phylum, these isolates were classified as γ-Proteobacteria, suggesting that γ-Proteobacteria dominated in cultivable marine bacterioplankton at both poles. Genus Pseudoalteromonas was the predominant group in the Chukchi Sea and the Bering Sea, and genus ShewaneUa dominated in cultivable bacterioplankton in the Prydz Bay. With sequence similarities above 97%, genus Psychrobacter was found at both poles. These 27 isolates were psychrotolerant, and significant 16S rDNA sequence similarities were found not only between arctic and antarctic marine bacteria ( 〉 99% ), but also between polar marine bacteria and bacteria from other aquatic environments ( ≥ 98.8% ), including temperate ocean, deep sea, pond and lake, suggesting that in the polar oceans less temperature-sensitive bacteria may be cosmopolitan and have a bipolar, even global, distribution at the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号